MatrixChain
We have a sequense continues matrix and A of matrix's col equals B of matrix's row.
When the A of matrix multiply B,the operate times is row[A] * col[A] * col[B].
So, please to calculate minmal operate times, if you change matrix multiply order.
Sample
#include <iostream>
using namespace std;
#include <time.h>
#include <stdlib.h>
#include <string.h>
int const MAX_DATA = 60, MIN_DATA = 5;
int const MAX_N = 10, MIN_N = 5;
int n;
int* data;
int** m;
int** s;
// init
void getData() {
srand((unsigned)time(NULL));
n = MIN_N + rand() % (MAX_N - MIN_N);
//n = 5;
data = new int[n+1]();
//data[0]=30; data[1]=35;data[2]=15;data[3]=5;data[4]=10;data[5]=20;
m = new int*[n+1];
s = new int*[n+1];
cout << "data: n = " << n << endl << "<";
for (int i = 0; i < n+1; i++) {
data[i] = MIN_DATA + rand() % (MAX_DATA - MIN_DATA);
cout << data[i] << ", ";
m[i] = new int[n+1]();
s[i] = new int[n+1]();
}
cout << ">" << endl;
}
// 按照 r 来打印数据
void printR() {
cout << endl << " m[i,j] print : " << endl;
for (int k = 1; k <= n; k++) {
cout << "r=" << k;
for (int i = 1; i < n+1; i++) {
for (int j = 1; j < n+1; j++) {
if ((j-i+1) == k) {
cout << "\tm[" << i << ", " << j << "]=" << m[i][j];
}
}
}
cout << endl;
}
cout << endl << " s[i,j] print : " << endl;
for (int k = 2; k <= n; k++) {
cout << "r=" << k;
for (int i = 1; i < n+1; i++) {
for (int j = 1; j < n+1; j++) {
if ((j-i+1) == k) {
cout << "\ts[" << i << ", " << j << "]=" << s[i][j];
}
}
}
cout << endl;
}
}
// solve
void matrixChain(int* data,int n) {
// init arr
for (int i = 0; i < n+1; i++){
for (int j = 0; j < n+1; j++) {
s[i][j] = i;
}
}
printR();
for(int r = 2; r <= n; r++) { // chain of length [0 - n] 子问题划分
for(int i = 1; i <= (n-r+1); i++) { // n-1+1 遍历其中的元素
int j = i + r -1; // j = 1 + 2 - 1 = 2 // 从子问题起始点
m[i][j] = m[i+1][j] + data[i-1]*data[i]*data[j]; // 计算当前数据 data[0]data[1]data[2] +m[2,2] = 优化值 m[1,2]
s[i][j] = i; //s[i][j] = i; 标记元素 = 坐标 记录分割位置 s[1,2] = 1
for(int k = i + 1; k <= j - 1; k++) { // 寻找其他划分 k = 2 < 2 - 1
int t = m[i][k] + m[k+1][j] + data[i-1]*data[k]*data[j]; // 前面的 + 后面的 + 相乘数据
if (t < m[i][j]) {
m[i][j] = t;
s[i][j] = k;
}
}
}
}
}
// solve
int recurMatrixChain(int* data,int i, int j) {
if (i == j) { // 递归到最小单元 如 data[1][1] = 0; data[1][1]=1
m[i][j] = 0;
s[i][j] = i;
return m[i][j];
}
m[i][j] = 1 << 30; // 该i到j 赋予最大值
s[i][j] = i; // 分割点在i
for (int k = i; k <= j-1; k++) { // 从i到j-1开始递归处理求最小值,在加上整体数据
int q = recurMatrixChain(data, i, k) + recurMatrixChain(data, k+1, j) + data[i-1]*data[k]*data[j]; //data[0]*data[k]*data[j]
if (q < m[i][j]) {
m[i][j] = q;
s[i][j] = k;
}
}
return m[i][j];
}
// 打印过程
void printProcess(int start, int end) {
if (start == end) return;
printProcess(start, s[start][end]);
printProcess(s[start][end]+1, end);
cout << "(A" << start << "*A" <<end << ")";
if (start != 1 || end !=n) {
cout << "->";
}
}
// 打印序列
void printOrder(int start, int end) {
if (start == end) {
cout << "A"<< end;
return;
}
cout << "(";
printOrder(start, s[start][end]);
cout << " * ";
printOrder(s[start][end]+1, end);
cout << ")";
}
void printResult() {
cout << endl << "result : " << m[1][n] << endl;
printOrder(1, n);
cout << endl;
printProcess(1, n);
}
int main() {
getData();
//matrixChain(data, n);
recurMatrixChain(data, 1, n);
printR();
printResult();
getchar();
return 0;
}