前缀树

最近看代码,发现了一个敏感词检测是用前缀树写的,看起来速度蛮快,毕竟是拿空间换时间,LOG倍速。但是缺点也很明显,待检测文本需要与敏感词词库中的值完全匹配。所以对于简短的词法比较合适。

原理:

  1. 每一个节点可以有多个子节点
  2. 节点“存储”字符, 节点与节点之间的连线自动形成单词。 如a节点与d节点,之间的连线就是单词 ad
  3. 节点可能是叶子节点,此时也是一个单词的“终点”,否则是其他拥有相同前缀的节点的“过客”, wordcount要加一。
  4. 删除一个单词,则对应节点上的“过客”都要减一,直至减至叶子节点。
# coding: utf8
MAX_TREE_WIDTH = 26
INIT_CHAR = 'a'
forbiddenwords = """
fuck
fucker
damn
silly
"""
class TrieNode(object):
    def __init__(self):
        self.nodes = [None] * MAX_TREE_WIDTH
        self.wordcount = 0
        self.isend = 0

class TrieTree(object):
    def __init__(self):
        self.root = TrieNode()

    def add(self, word):
        word = word.lower()
        curnode = self.root
        for char in word:
            index = ord(char) - ord(INIT_CHAR)
            if curnode.nodes[index] is None:
                curnode.nodes[index] = TrieNode()
            curnode = curnode.nodes[index]
            curnode.wordcount += 1
        curnode.isend = 1
    
    def search(self, word):
        word = word.lower()
        curnode = self.root
        for char in word:
            index = ord(char) - ord(INIT_CHAR)
            if curnode.nodes[index] is None:
                return -1
            curnode = curnode.nodes[index]
        return curnode.wordcount
    
    def countstartswith(self, prefix):
        curnode = self.root
        for char in prefix:
            index = ord(char) - ord(INIT_CHAR)
            if curnode.nodes[index] is None:
                return -1
            curnode = curnode.nodes[index]
        return curnode.wordcount
    
    def delete(self, word):
        if self.countstartswith(word) > 0:
            curnode = self.root
            for char in word:
                index = ord(char) - ord(INIT_CHAR)
                curnode.nodes[index].wordcount -= 1
                if curnode.nodes[index].wordcount == 0:
                    curnode.nodes[index] = None
                    return
                curnode = curnode.nodes[index]
            curnode.isend = 0

if __name__ == "__main__":
    print("hello trie tree.")
    tree = TrieTree()
    tree.add("h")
    tree.add("He")
    tree.add("hEl")
    tree.add("helL")
    tree.add("hello")
     print(tree.search('he'))
     print(tree.countstartswith("h"))
    print(tree.countstartswith("hel"))
    tree.delete("hel")
    print(tree.countstartswith("hel"))
    print(tree.countstartswith("guo"))
     words = [item for item in forbiddenwords.strip("").split("\n") if item != '']
     for word in words:
         print("adding word: {}".format(word))
         tree.add(word)
     # test sequence
     teststr = "you a silly mother fucker"
     tests = teststr.split(" ")
     for test in tests:
         print("{} --> {}".format(test, tree.search(test)))

运行结果:

hello trie tree.
4
5
3
2
-1
adding word: fuck
adding word: fucker
adding word: damn
adding word: silly
you --> -1
a --> -1
silly --> 1
mother --> -1
fucker --> 1

相较于之前 基于朴素贝叶斯分类算法 的golang 与PHP结合的例子,效率,准确性,适用性都很逊。这也跟场景息息相关,选对了场景,前缀树会给出一个令人满意的答复的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容

  • 前缀树是N叉树的一种形式,常用于存储字符串,树中每一个节点表示一个字符。前缀树重要的存在价值是搜索速度,典型的利用...
    s1991721阅读 578评论 0 1
  • 字典树介绍 又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字...
    远o_O阅读 5,775评论 1 5
  • 本文只是自己的笔记,并不具备过多的指导意义。 前缀树 何为前缀树 前缀树又名字典树,单词查找树,Trie树,是一种...
    kirito_song阅读 4,219评论 0 13
  • 定义 trie,又称前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串。与二叉查找树不同,键不是...
    秦汉邮侠阅读 1,815评论 0 0
  • 前缀树的基本性质1.根节点不包含字符,除根节点外每一个节点都只包含一个字符。2.从根节点到某一节点,路径上经过的字...
    icecrea阅读 1,254评论 0 1