配对箱型图的绘制

配对箱线图,常见于配对样本的数据分析中。

这种配对箱线图的好处是,除了能够表现两组的整体差异,还能够清晰地呈现单个样本的前后改变。

数据结构:

输入数据格式

代码部分:

library(ggplot2)
library(forcats)
library(ggpubr)

ggplot(df, aes(x =group , y = LAI)) +
  geom_boxplot(aes(fill = group), show.legend = F, width = 0.6) +  #箱线图
  scale_fill_manual(values = c('#00AFBB', '#E7B800')) +  #设置颜色
  geom_point(size = 3,color='red') + 
  geom_point(size = 3,shape=21) +  #绘制散点
  geom_line(aes(group = saple), color = 'gray', lwd = 0.5) +  #配对样本间连线
  theme(panel.grid = element_blank(), 
        axis.line = element_line(colour = 'black', size = 1), 
        panel.background = element_blank(), 
        plot.title = element_text(size = 15, hjust = 0.5), 
        plot.subtitle = element_text(size = 15, hjust = 0.5), 
        axis.text = element_text(size = 15, color = 'black'), 
        axis.title = element_text(size = 15, color = 'black')) +
  labs(x = 'Strategy', y = 'LAI', title = 'A vs B')+
  stat_compare_means(method = "t.test",paired = TRUE, comparisons=list(c("A", "B")))#配对t检验
结果图
my_comparisons = list( c("I_GW", "D_GW"), c("I_GW", "S_GW"), c("D_GW", "S_GW") )

ggpaired(df, x="env", y="num", fill="env",id = "ID",        main = "The impact of different stress environments on thousand grain weight",  # 图表标题
         xlab = "Envrionment",     # x轴标签
         ylab = "Thousand-grain weight",   # y轴标签
         line.color = "gray", line.size = 0.1
        )  +stat_compare_means(comparisons = my_comparisons,
                             # label = "p.signif",
                             method = "t.test")
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容