Glove词向量

转载自http://www.fanyeong.com/2018/02/19/glove-in-detail/

Glove词向量出自于论文《Glove:Global Vectors for Word Representation》

什么是Glove?

Glove的全称是Global Vectors for Word Representation,中文意思是全局词向量,它是一个基于全局词频统计(count-based&overall statistics)词表征(word representation)工具。
跟word2vec一样,它可以把一个单词表示成一个由实数组成的向量,向量可以捕捉单词之间的一些语义特性,如相似性(similarity)、类比性(analogy)。并且通过对向量的运算,如欧几里得距离或cosine相似度,可以计算两个单词之间的 语义相似性。

Glove是如何实现的?

  1. 根据语料库(corpus)构建一个共现矩阵(Co-occurrence Matrix),矩阵中每一个元素X_{ij}代表单词i和单词j在特定大小的上下文窗口(context window)内共同出现的次数。一般,这个次数的最小值是1,但Glove做了进一步处理:它根据两个单词在上下文窗口的距离d,提出了一个衰减函数(decreasing weighting):decay=1/d用于计算权重,也就是说距离越远的两个单词所占总计数(total count)的权重越小。

  2. 构建词向量(Word Vector)和共现矩阵(Co-occurrence Matrix)之间的近似关系:
    w_i^T\bar{w}_j+b_i+\bar b_j=\log(X_{ij})
    其中,w_i\bar{w}_j是要求的词向量,b_i\bar{b}_j分别是两个词向量的偏置项。

3.构造loss function:
J=\sum_{i,j=1}^Vf(X_{ij})(w_i^T\bar{w}_j+b_i+\bar b_j-\log(X_{ij}))^2
这个损失函数是最简单的mean square loss,只不过在此基础上增加了一个权重函数f(X_{ij}),它的作用在于:对于在一个语料库中经常一起出现的单词(frequent occurrence),

  • 这些单词的权重要大于那些很少在一起出现的单词(rare occurrence),所以这个函数是非递减函数;

  • 这些单词的权重也不能太大(overweighted),当到达一定程度之后应该不再增加;

  • 如果两个单词没有在一起出现,即X_{ij}=0,那么它们不应该参与到loss function 的计算中去,即f(0)=0

文中,作者采用了符合上述条件的分段函数:
f(x)=\begin{cases} (x/x_{max})^{\alpha},\, if x<x_{max} \\ 1,\, otherwise \end{cases}

分段函数

文中的所有实验,\alpha的取值都是0.75, x_{max}的取值都是1000

Glove是怎么训练的?

虽然很多人声称Glove是一种无监督(unsupervised learning)的学习方式,即不需要人工标注数据,但实际上它还是有标签的,这个标签就是\log(X_{ij}),而向量x_i\bar x_j就是要不断更新学习的参数。因此,本质上它的训练方式和监督学习的训练方式没有什么不同,都是基于梯度下降的。

训练的具体做法是:采用AdaGrad的梯度下降算法,对矩阵X中的所有非零元素进行随机采样,学习率设置为0.05,在vector size小于300的情况下迭代50次,其他大小的vector size迭代100次,直至收敛。

因为X是对称的,所以最终学到的两个词向量w_i\bar{w}_j应该也是对称的,等价的,只不过由于初始值不一样,导致最终的值不一样。为了提高鲁棒性,最终选择两者之和w_i+\bar{w}_j作为最终的词向量(两者的初始化不同相当于加了不同的随机噪声所以能提高鲁棒性)。

实验结果

这个图一共采用了三个指标:语义准确度,语法准确度以及总体准确度。那么我们不难发现Vector Dimension在300时能达到最佳,而context Windows size大致在6到10之间。

Glove与LSA、word2vec的比较

  • LSA(Latent Semantic Analysis)是一种比较早的count-based的词向量 表征工具,是基于co-occurence matrix的。其采用基于奇异值分解(SVD)的矩阵分解技术对大矩阵进行降维,因为SVD的复杂度很高,所以计算代价比较大。此外,它对所有单词的统计权重都是一致的。
  • word2vec最大的缺点是只利用了固定窗口内的语料,而没有充分利用所有的语料。
    所以Glove是把两者的优点结合了起来。

参考实践代码

如果本身语料比较小,微调没什么作用,或者自己直接训练没有很强的算力,直接使用采用大数据进行预训练的glove词向量也会有比较好的效果。

import numpy as np

DEFAULT_FILE_PATH = "utils/datasets/glove.6B.50d.txt"

def loadWordVectors(tokens, filepath=DEFAULT_FILE_PATH, dimensions=50):
    """Read pretrained GloVe vectors"""
    wordVectors = np.zeros((len(tokens), dimensions))
    with open(filepath) as ifs:
        for line in ifs:
            line = line.strip()
            if not line:
                continue
            row = line.split()
            token = row[0]
            if token not in tokens:
                continue
            data = [float(x) for x in row[1:]]
            if len(data) != dimensions:
                raise RuntimeError("wrong number of dimensions")
            wordVectors[tokens[token]] = np.asarray(data)
    return wordVectors
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容