数据库事务的四个特性及含义
原子性(Atomicity)、一致性(Correspondence)、隔离性(Isolation)、持久性(Durability)
原子性:整个事务中的所有操作,要么全部完成,要么全部不完成。事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。
一致性:在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。
隔离性:同一时间仅有一个请求用于同一数据。
持久性:在事务完成以后,该事务所对数据库所作的更改便持久的保存在数据库之中,并不会被回滚。
视图的作用,视图可以更改么
视图是虚拟的表,与包含数据的表不一样,视图只包含使用时动态检索数据的查询;不包含任何列或数据。使用视图可以简化复杂的sql操作。
视图不能被索引,也不能有关联的触发器或默认值,如果视图本身内有order by 则对视图再次order by将被覆盖。
创建视图:create view
drop,delete与truncate的区别
drop直接删掉表 truncate删除表中数据,再插入时自增长id又从1开始 delete删除表中数据,可以加where字句
数据库范式
1 第一范式(1NF)
在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。
所谓第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。如果出现重复的属性,就可能需要定义一个新的实体,新的实体由重复的属性构成,新实体与原实体之间为一对多关系。在第一范式(1NF)中表的每一行只包含一个实例的信息。简而言之,第一范式就是无重复的列。
2 第二范式(2NF)
第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或行必须可以被惟一地区分。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。这个惟一属性列被称为主关键字或主键、主码。
第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。简而言之,第二范式就是非主属性非部分依赖于主关键字。
3 第三范式(3NF)
满足第三范式(3NF)必须先满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性。
存储过程与触发器的区别
触发器与存储过程非常相似,触发器也是SQL语句集,两者唯一的区别是触发器不能用EXECUTE语句调用,而是在用户执行SQL语句时自动触发执行
创建存储过程CREATE PROC
创建触发器CREATE TRIGGER
游标
游标可以遍历返回的多行结果。
Mysql中游标只适用于存储过程以及函数。
1.定义游标:declare 游标名 cursor for select语句;
2.打开游标:open 游标名;
获取结果:fetch 游标名 into 变量名[,变量名];
关闭游标:close 游标名;
索引为什么可以加快查询速度
索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址,在数据十分庞大的时候,索引可以大大加快查询的速度,这是因为使用索引后可以不用扫描全表来定位某行的数据,而是先通过索引表找到该行数据对应的物理地址然后访问相应的数据
索引的优缺点
优势:可以快速检索,减少I/O次数,加快检索速度;根据索引分组和排序,可以加快分组和排序;
劣势:索引本身也是表,因此会占用存储空间,一般来说,索引表占用的空间的数据表的1.5倍;索引表的维护和创建需要时间成本,这个成本随着数据量增大而增大;构建索引会降低数据表的修改操作(删除,添加,修改)的效率,因为在修改数据表的同时还需要修改索引表;
索引的分类
主键索引 不允许重复,不允许空值
唯一索引 唯一的,允许空值
全文索引 用大文本对象的列构建的索引
组合索引 用多个列组合构建的索引,这多个列中的值不允许有空值
索引的实现原理
1、哈希索引:
哈希索引用索引列的值计算该值的hashCode,然后在hashCode相应的位置存该行数据的物理位置,因为使用散列算法,因此访问速度非常快,但是一个值只能对应一个hashCode,而且是散列的分布方式,因此哈希索引不支持范围查找和排序的功能。
2、全文索引:
针对较大的数据,生成全文索引非常的消耗时间和空间。对于文本的大对象,或者较大的类型数据,如果使用普通索引,那么匹配文本前几个字符还是可行的,但是想要匹配文本中间的几个单词,那么就要使用LIKE %word%来匹配,这样需要很长的时间来处理,响应时间会大大增加,这种情况,就可使用全文索引了,在生成全文索引时,会为文本生成一份单词的清单,在索引时及根据这个单词的清单来索引
3、B-Tree索引和B+Tree索引:
B-Tree是平衡多路查找树
B+Tree是在B-Tree基础上的一种优化
目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构
什么时候要使用索引?
主键自动建立唯一索引;
经常作为查询条件在WHERE或者ORDER BY 语句中出现的列要建立索引;
查询中与其他表关联的字段,外键关系建立索引
高并发条件下倾向组合索引;
用于聚合函数的列可以建立索引,例如使用了max(column_1)或者count(column_1)时的column_1就需要建立索引
什么时候不要使用索引?
经常增删改的列不要建立索引;
有大量重复的列不建立索引;
表记录太少不要建立索引。