Python,Opencv,读取图片的坑,matplotlib imshow怎么show的

这两天在训练图像的时候出了点问题。因为这段时间图像训练的效果出奇的好,所以带着主观偏见在继续做研究,没有仔细看为什么。后来发现了问题,我表示这段时间的训练都白搭了。

这个问题就出在读取hdr图片上。python读取图片的方式,据我所知主要有两种。一种是用imageio读,另一个是用opencv。读取的图片一般用matplotlib显示。我总得看看我读取的图片对不对吧。

#用imageio读图片的时候

img_path = 'xxx\xx\xxx.hdr';

hdr = io.imread(img_path)

#如果用opencv读的话

hdr = cv2.imread(img.path).astype('float32')

#显示图片的时候

plt.imshow(hdr)

plt.show()

可能是因为我这个人比较不求甚解,并且做事情爱偷懒,容易想当然。一开始用imageio读取的图片用plt显示出来是花的,就像rgb通道没有全显示出来一样,一大片纯蓝色或者纯红色。我一开始觉得这种读法有问题,就转用了opencv,结果读取的图片效果效果显示很好。

殊不知,opencv这个开源函数库有很多坑。很多操作没有记录在documentation里面,比如这个hdr图像的读取就是其中之一。

做高动态图像的人肯定知道,ldr图像是8bit的,也就是0-255整数的值域。比如常见的jpg图像就是这个值域范围。而高动态hdr图像就不一定了,我见过的全是小数 0到+Inf,多大都有可能。在cv2.imread()方程的document中明确的写着支持读取.hdr图像,我就以为opencv可以乖乖的把hdr图像读下来存在变量中。鬼知道读取的图像竟然是uint8的格式,也就是256位!!hdr那么大的范围是怎么变成uint8这么小的值域的呢?我没找到任何地方标出过这个过程。单单从效果上来看,应该是做了一次简单的色调映射(tone-mapping)。映射过的图像视觉效果当然好了,这也就导致我的训练全TM是假象!!!

划重点:

1,读取图片的格式在图像处理中尤为重要。当你在做data preprocessing的时候,可能因为格式不对而mess up整个处理过程。

2,imageio读取图像比较老实。如果是.jpg图像,会读成uint8格式。如果是.hdr图像会读成float(八成是float32)存起来,不做任何的多余操作。

3,opencv的imread()方程在读取.hdr图像的时候,会做一次没有记录的图像值域压缩。压缩至0-255之间。

4,matplotlib的imshow方程显示图像的机理比较复杂。

至于Matplotlib的imshow是怎么运作的,有人在stackoverflow上做过简单的介绍。大概的规律是这样的:

- 如果是NxM的数组,如果是float类型的0-1,他会被解析成灰度图(document上是这么说的,但是在实践中不是这样的结果。。)。其他的类型会用colormap解析(如果没有明确标明,那就会被autoscale)。

- 如果是NxMx3 float的数组的话,那个x3会被解析成RGB通道。他的值域会被理解为0到1之间。 如果超出这个范围的话,会被取正1的mod。 比如1.2 mod 1 = 0.2.  -1.7 mod 1 = 0.3

- 如果是NxMx3 uint8 数组的话,会被读成标准的图片,值域范围是0到255

- 如果是NxMx4的话,解析规律和上面一样。但是第四维度会被理解为不透明度,就是alpha通道。


Ref:

https://stackoverflow.com/questions/24739769/matplotlib-imshow-plots-different-if-using-colormap-or-rgb-array

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容