社交中用户价值、状态评估及算法匹配模型概述

接上篇文章中国社交领域到终局了吗?未来可能会有哪些发展和创新?--我的部分看法提到的用户价值和算法匹配,本文进行简单的概述,欢迎点好看和分享、评论,后面我再详细写各部分。

目录

一、用户自身价值评估

二、用户状态评估

三、匹配规则

四、各价值匹配度计算方法(初步)

五、标签举例(较多,本文先不附上)

六、应用(后面文章再写)


一、用户自身价值评估

人与人社交的基础:价值交换;

通过三大价值衡量(经济价值、外形价值、生活价值),分别按分值体现,从低到高1-10分;

经济价值计算方法:默认值值3 ,根据用户初始选择的行业、职位、收入,和默认值综合得到初始值;

外形价值计算方法:默认值值3 ,根据用户初始选择的头像和上传的照片,和默认值综合得到初始值;

生活价值计算方法:生活价值不便直接算分衡量,通过用户自选标签、内容分析等判断用户的性格和爱好,通过标签体现,作为匹配的两个要素。

(传统匹配:用户与用户间大海捞针;)  
(推荐进行分发,让用户匹配合适自己的人)  

二、用户内容评估

用户每次发布一条内容,可分为:

展示经济价值 、展示外形价值;同时,状态也会展示个人的性格和爱好。

用户发布内容后,平台分析其内容,对其人物价值和标签进行更新完善(初始阶段人工打分或标注,用户量增大,数据积累增多后通过机器学习由机器完成)。

若状态展示价值的,对其价值分数进行调整(经济,外形);展示性格的,为其增加性格标签;展示爱好的,对其增加爱好标签。

三、匹配规则

每个用户都是外在+内在的一个人物画像:外在=外形价值+经济价值,内在=性格+爱好。     

匹配倾向占比:设z1=外形价值,z2=经济价值,z3=性格,z4=爱好; z1+z2+z3+z4=1。

用户发布内容时,判断其价值交换倾向,外在还是内在,为其做对应推荐。即找准用户此刻需求,基于历史积累的价值数据匹配。

举例:

找投资伙伴:倾向经济价值,z1=0.9,为其推荐经济价值匹配度高的人

找短期玩伴:倾向外形价值z2=0.8,为其推荐外形价值匹配度高的人

找人聊天:倾向性格 z3=0.9,为其推荐性格匹配度高的人

找人一起运动:倾向爱好 z4= 0.8,为其推荐爱好匹配度高的人

当用户没有明显需求倾向时,默认值 z1=0.3,z2=0.3, z3=0.2, z4=0.2;

再结合其历史匹配信息,结合协同过滤等推荐算法,为其做推荐。

四、各价值匹配度计算方法(初步)

经济价值匹配度计算方法:

用户a的经济价值为 x1(百分制)

用户b的经济价值为 x2(百分制)

经济价值匹配度 x = 1-|x1-x2|/100;


外形价值匹配度计算方法:

用户a的 外形价值为 y1(百分制)

用户b的 外形价值为 y2(百分制)

外形价值匹配度 y = 1-|y1-y2|/100;

性格匹配度计算方法f 以及爱好匹配度计算方法i参考业界成熟的如协同过滤等推荐算法,如推荐短视频、电影、音乐等;

最终两两间匹配度= x*z1+y*z2+f*z3+i*z4

总结

篇幅有限,如果点赞、分享、评论的朋友多了我再详写如何分析状态并贴标签、算法细化、以及应用层面设计等;

抛砖引玉,期待交流

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,869评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,716评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,223评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,047评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,089评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,839评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,516评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,410评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,920评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,052评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,179评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,868评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,522评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,070评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,186评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,487评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,162评论 2 356

推荐阅读更多精彩内容

  • 星之泪(祭奠那些逝去的梦想) 花开的季节 一颗星悄然升起 缀在梦想的夜空 闪亮闪亮 发出最耀眼的光…… 许是花开太...
    金指尖的花园阅读 149评论 0 3
  • 运营新人入坑的正确姿势 我个人观点:运营难在广,贵在精,重在情商。 运营人的情商格外重要,当开发攻城狮可以自豪的说...
    Tim爱运营阅读 395评论 0 1
  • [读书分享] 《好的婚姻就是一次又一次爱上对方》———— 哈爸哼妈 (P169—P173) 哼妈写到:在我为人妻的...
    郭小郭0830阅读 118评论 0 0
  • 感赏学校精心组织安排了青春成长仪式,小邹妈妈精心准备了节日礼物。每位家长都把自己内心真情以书信方式传递给了孩子,心...
    上善若水139阅读 116评论 0 0