关于细胞互作可视化,我们的内容已经很多了,小伙伴依然有其他中意的内容,这里复现一篇cancer cell图表,使用Edge bunding plot展示互作结果,ligand和receptor分别用不同形状展示,不同细胞之间用不同颜色展示,看到这个图,不知道您有没有很熟悉,我们卖个关子,你一定见过。这篇cancer cell的作者非常nice,原文提供了详细的代码可以学习:https://kkgithub.com/aliceygao/pan-Fibroblast。原文代码可以运行,但是应该不是作者最终版本的代码,所以细节上有点问题,此外,我们对代码也做了一些精简!
(reference:Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation)
虽然提供了代码,但是流程很繁琐。所以我们封装了简单的函数。也考虑到常用的工具,cellchat和cpdb都进行了分析,其他互作结果整理成需要的格式参照函数整理即可。
hanshu:
image.png
image.png
演示cellchat结果:
library(CellChat)
library(dplyr)
library(ggraph)
library(tidyr)
library(ggplot2)
ks_CC_bdPlot(cellchat_obj = HD.cellchat, source_cells = c("Kers","ECs","Tcell"),
target_cells= c("Kers","ECs","Tcell"),comm_cut=0)
ks_CC_bdPlot(cellchat_obj = MDA.cellchat, source_cells = c("Fibs","ECs","Tcell"),
target_cells= c("Fibs","ECs","Tcell"),comm_cut=0)
cpdb:
setwd('D:\\KS项目\\公众号文章\\函数-弦图展示cellphonedb细胞互作结果受配体\\示例数据')
GO_pvals <- read.delim("./statistical_analysis_pvalues_08_15_2024_132104.txt", check.names = FALSE)
GO_means <- read.delim("./statistical_analysis_means_08_15_2024_132104.txt", check.names = FALSE)
cpdb_anno <- read.csv('D:/KS项目/公众号文章/函数-弦图展示cellphonedb细胞互作结果受配体/cpdb_anno.csv', header = T, row.names = 1)
ks_cpdb_bdPlot(file_pvals = GO_pvals,
file_means = GO_means,
cpdb_anno = cpdb_anno,
source_cells = c("Adipocytes", "Endothelial"),
target_cells = c("Adipocytes", "Endothelial"),
comm_cut = 1)
image.png