《A C-LSTM Neutral Network for Text Classification》阅读笔记

将CNN和LSTM结合起来学习句子的representation,在情感分类和问题分类的任务上都取得了很好的结果。

Traditional sentence modeling uses the bag-of-words model which often suffers from the curse of dimensionality.维数灾难

过去的方法,一种使用词袋模型,但是有维数灾难;另一种使用合成的方法,例如在语义词向量上进行代数运算以产生语义句子向量;这些方法都丢失了词序信息。更近一些的方法分为sequence-based models和tree-structured models。

CNN is able to learn local response from temporal or spatial data but lacks the ability of learning sequential correlations; on the other hand, RNN is specialized for sequential modelling but unable to extract features in a parallel way.

架构图:

1. N-gram Feature Extraction through Convolution

句子是Lxd的,filter是kxd的,feature map的大小为L-k+1。对于句子中的每个词来说,都有连续的词用于filter的计算,例如j位置的,wj=[xj, xj+1, …, xj+k-1]

m是filter

有n个filters,长度都相同

(L-k+1)xn


2. Text classification

交叉熵作为损失函数

3. Padding

maxlen是训练集中最长的句子,由于卷积层需要定长的输入,因此将所有句子都padding到maxlen的长度,补足句尾。对于测试集中的句子,比maxlen短的补足,比maxlen长的则要从句尾截断至maxlen的长度。

4. 实验

filter的长度为2,3,4;两种:单卷积层,相同的filter长度;多卷积层,不同长度的filter平行执行。


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容

  • 今天天特别热,有28度了,好多人已经穿半袖了。晚上走路回家听的是《压力管理》,压力是可以被管理的。压力是怎么产生的...
    摇曳的野百合阅读 154评论 1 1
  • 家居装修中要粉刷一次墙面也是一件非常不容易的事情,所以,翻新哥提醒大家,在使用油漆涂料的时候,一定要注意一些细节,...
    翻新哥阅读 175评论 0 0
  • 如果你接触一款游戏,在一次次的失败中停下本来前进的脚步,你还会那么想玩游戏吗?是不断变换方法,坚持下去,直到成功为...
    罗生伟阅读 336评论 0 0