1.下载caffe_ssd
cd Projects/
git clone https://github.com/weiliu89/caffe.git caffe_ssd
cd ssdcaffe
git checkout ssd #切换到ssd分支
2.修改Makefile.config配置文件
- 修改caffe_ssd目录下的Makefile.config
USE_CUDNN:=1 #若使用GPU
USE_OPENCV:=1 #使用OpenCV
OPENCV_VERSION:=3
- 根据自己的情况修改CUDA_ARCH的,最好将前几个compute_20、compute_30等删除,不然编译可能会报错。
CUDA_ARCH := -gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
- 修改头文件与库文件目录
#修改前
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
#修改后
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial /usr/local/cuda/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/local/cuda/lib64
3.修改Makefile文件
- 修改链接的库文件,增加三个库
m hdf5_serial_hl hdf5_serial
,修改为:
#修改前
LIBRARIES += glog gflags protobuf boost_system boost_filesystem boost_regex m hdf5_hl hdf5
#修改后
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
- 修改NVCCFLAGS编译参数
#修改前
NVCCFLAGS += -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
#修改后
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
- 修改LIBARAIES
#修改前
LIBRARIES += boost_thread stdc++
#修改后
LIBRARIES += boost_thread stdc++ boost_regex
- 开始编译
make all -j
make distribute
中途make编译会报错:
报错1:fatal error: leveldb/db.h: No such file or directory
解决1:
参考:https://blog.csdn.net/muyeluo123/article/details/100917291
1.安装leveldb:去https://github.com/google/leveldb下载leveldb
2.编译安装:mkdir build & cd build & cmake .. & make -j4 & sudo make install
下载的时候需要注意thirdparty中的两个文件夹是空的,需要单独再去下载下来放入leveldb对应目录中
报错2:fatal error: lmdb.h: No such file or directory
解决2:
apt安装sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
报错3:
解决3:
因为我的是cuda10
将前两个删除
-gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
sudo apt-get install libsnappy-dev
问题4
lib/libcaffe.so: undefined reference to cudnnSetLRNDescriptor' lib/libcaffe.so: undefined reference to
cudnnGetConvolutionBackwardDataWorkspaceSize'
解决方法4:
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
4.下载预训练模型
去https://github.com/weiliu89/caffe/tree/ssd下载预训练ssd模型(由于这些预训练模型存放在google drive,需要借助道具进行下载)
比如其中的SSD512 for 07++12+COO
下载解压到ssd_caffe的models目录中
记住这里
deploy.prototxt
和VGG_VOC0712_SSD_512x512_ft_iter_120000.caffemodel
这两个模型的本地绝对路径,之后需要用到。
/home/clark/Projects/caffe_ssd/caffe/models/models_VGGNet_VOC0712_SSD_512x512_ft/models/VGGNet/VOC0712/SSD_512x512_ft/deploy.prototxt
/home/clark/Projects/caffe_ssd/caffe/models/models_VGGNet_VOC0712_SSD_512x512_ft/models/VGGNet/VOC0712/SSD_512x512_ft/VGG_VOC0712_SSD_512x512_ft_iter_120000.caffemodel
5.重新编译autoware1.14
- 修改autoware中的ssdcaffe相关配置
前往/home/clark/Projects/Autoware1.14.0/src/autoware/core_perception/vision_ssd_detect
修改CMakeLists.txt其中SSD_CAFFE的路径为上述安装下的distribute目录
set(SSD_CAFFE_PATH "$ENV{HOME}/Projects/caffe_ssd/caffe/distribute")
- 修改vision_ssd_detect.launch文件
将其中network_definition_file和pretrained_model_file修改为本地这两个文件实际绝对路径
<arg name="network_definition_file" default="$(env HOME)/Projects/caffe_ssd/caffe/models/models_VGGNet_VOC0712_SSD_512x512_ft/models/VGGNet/VOC0712/SSD_512x512_ft/deploy.prototxt"/>
<arg name="pretrained_model_file" default="$(env HOME)/Projects/caffe_ssd/caffe/models/models_VGGNet_VOC0712_SSD_512x512_ft/models/VGGNet/VOC0712/SSD_512x512_ft/VGG_VOC0712_SSD_512x512_ft_iter_120000.caffemodel"/>
- 然后重新编译Autoware1.14
删除根目录下的build、install、log目录,这些是上一次编译后的产物
AUTOWARE_COMPILE_WITH_CUDA=1 colcon build --cmake-args -DCMAKE_BUILD_TYPE=Release
6.打开一个终端,启动autoware
cd Projects/Autoware1.14.0/
source install/setup.bash
roslaunch runtime_manager runtime_manager.launch
7.启动USB摄像头ros节点
这一步之后可以生成摄像头的话题节点:image_raw
rosrun uvc_camera uvc_camera_node
8.启动ssd caffe
这一步的目的是为了产生ssd目标检测的话题:/detection/image_detection/objects
roslaunch vision_ssd_detect vision_ssd_detect.launch
9.Autoware打开vision_ssd_detect
-
Autoware的Computing选项卡打开vision_ssd_detect
- 打开右下角rviz的时候,可能会发生中断,继续再打开一遍
roslaunch vision_ssd_detect vision_ssd_detect.launch
即可
-
然后在rviz界面的Panels选项中点击Add New Panel,选中中间intergrated_viewer中的ImageViewerPlugin选项窗口
- 然后在ImageViewerPlugin窗口的Image Topic话题中选中/image_raw,并且Object Rect Topic话题中选中/detection/image_detector/objects,就可以出现使用ssd预训练模型(
VGG_VOC0712_SSD_512x512_ft_iter_120000.caffemodel
)检测摄像头中物体的效果。