RClimDex 气候指数

尼泊尔东部近20年降水量的时空分析(1997-2016)

3.2.3降水指数分析

https://github.com/ECCC-CDAS/RClimDex

然后使用专门设计的软件RClimDex,使用质量控制和均质化站的数据计算极端降水指数,该软件在R编程环境(http://www.r-project.org/)下运行。这些指数由世界气象组织(气象组织)气候学委员会和气候变率与可预测性研究计划(CLIVAR)共同建立的ETCCDI制定和推荐。在ETCCDI给出的27个指数中,有11个指数用于评估极端降水指数。在这项研究中,我们计算了所有这11个指数(表 2)。此外,为了更好地理解,将指数进一步分类为频率指数和强度指数,这些指数改编自Klein等人。(2009)和dos Santos等人。(2012)。

使用Mann-Kendall(MK)趋势检验(Kendall,1957 ; Mann,1945)分析了这些指数和总季节性降水的时间变化,同时使用森氏坡度法(Sen,1968)评估了趋势的大小。。每个指数的趋势在95%的置信水平下被认为是显着的。

WMO认可的27项极端气候指数计算软件RClimdex与中文说明书

http://etccdi.pacificclimate.org/software.shtml

相关python库文件

ICCLIM(Indice Calculation CLIMate)是一个用于计算多种气候指数的Python库。

目前,欧洲气候评估和数据集根据气温和降水变量定义的49个气候指数包括:

  • 11个冷指数(GD4,CFD,FD,HD17,ID,CSDI,TG10p,TN10p,TX10p,TXn,TNn)
  • 1干旱指数(CDD)
  • 9个热指数(SU,TR,WSDI,TG90p,TN90p,TX90p,TXx,TNx,CSU)
  • 14个降雨指数(PRCPTOT,RR1,SDII,CWD,R10mm,R20mm,RX1day,RX5day,R75p,R75pTOT,R95p,R95pTOT,R99p,R99pTOT)
  • 4雪指数(SD,SD1,SD5cm,SD50cm)
  • 6个温度指数(TG,TN,TX,DTR,ETR,vDTR)
  • 4个复合指数(CD,CW,WD,WW)

有关每个指标的详细说明,请访问http://eca.knmi.nl/documents/atbd.pdf

最初ICCLIM旨在通过climate4impact门户网站计算气候指数。尽管存在能够计算气候指数的其他软件包(CDOR软件包),但还是决定用Python开发一个新软件。Python语言首先选择与PyWPS接口:Web处理服务(WPS)标准的Python实现。另一个原因是与eventially接口OpenClimateGIS

可在此处找到ICCLIM开发人员存储库:https//github.com/cerfacs-globc/icclim

用于分析极值和其他气候分析的资源

(来自D7.3,第4.2节) |
| CCl / CLIVAR / JCOMM联合气候变化检测和指数专家组(ETCCDI)为分析气候和极端天气提供了有用的指导和资源,包括“分析气候变化中的极端情况以支持适应的知情决策”的准则“(Klein-Tank et al。,2009)。

ETCCDI / CRD气候变化指数网页 http://cccma.seos.uvic.ca/ETCCDI/提供:

  • 关于气候变化指数计算的批准定义和指南,以及标准软件包
  • 关于气候数据同质化的实用指南
  • 获取气候指数的在线资源
  • 提交新的或更新的索引数据的地方

提供软件包用于数据均匀化(RHtestsV3)和用于计算极值指数(RClimDex)。这两个都基于免费提供的R统计软件包 http://www.r-project.org/

R也是NCAR开发的Extremes极限值分析工具包的基础:http
//www.isse.ucar.edu/extremevalues/evtk.html

CRAN网站 http://cran.r-project.org/web/packages/提供了广泛的R包用于统计分析,包括用于气候分析的数据,例如clim.run(用于统计降尺度,由Rasmus开发) Benestad - 参见 http://rcg.gvc.gu.se/edu/esd.pdf)和Rclim(在ENSEMBLES项目中开发,用于分析网格数据集中的极值分析 http://www1.secam.ex.ac.uk /rclim-initiative.dhtml)。用于偏差校正的CDF.t包(见D7.3的第3.6节)也可从CRAN网站获得。由Themeβl等人实施的偏差校正方法。(2010)也在R.中实现.RNetCDF提供R和NetCDF数据集之间的接口。

另一个可能有用的工具是通过PCMDI软件门户网站http://www2-pcmdi.llnl.gov/cdat提供的CDAT(气候数据分析工具) ,它基于Python。它对PCMDI提供的netCDF文件的可视化特别有用。最后,由KNMI的Geert van Oldenborgh开发的ClimateExplorer工具为统计研究提供了一套分析工具和大型气候数据库:http//climexp.knmi.nl/

ACRE WORKSHOP“Python中的气候指数和天气类型”

这些材料将包含在Jupyter笔记本中,简而言之,它是一个在浏览器中运行的交互式开发环境,允许创建混合代码,富文本注释,图形等的可执行文档。这些可以notebooks在目前的目录中找到github repo,网址:https://github.com/nicolasfauchereau/ACRE_workshop/tree/master/notebooks。如果您不想安装任何东西和/或运行笔记本,只需单击github上的笔记本链接即可跟随它们,它们将通过github以HTML格式呈现:

要下载资料的存档(zip),请单击https://github.com/nicolasfauchereau/ACRE_workshopClone or Download右侧的绿色按钮(),然后选择。Download ZIP

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容