ETCCDI 气候变化指数

https://www.wcrp-climate.org/etccdi

气候变化指数
背景
气候界普遍认为,极端气候事件的频率或严重程度的任何变化都会对自然和社会产生深远的影响。因此,分析极端事件非常重要。极端气候变化的监测,检测和归因通常需要每日分辨率数据。但是,全局完整且易于获得的全分辨率日常数据集的编译,提供和更新是一项非常困难的任务。这部分是因为并非所有国家气象和水文气象服务(NMHS)都有能力或授权自由分发他们收集的每日数据。因此,ET及其前身CCl / CLIVAR气候变化检测工作组(WG)一直在协调国际上的发展,计算和分析一系列指数,以便个人,国家和地区能够以完全相同的方式计算指数,使其分析能够无缝地融入全球图景中(Karl等,1999,Peterson和共同作者2001) 。希望参与这项工作将使所有有关各方,包括指数提供者,能够从目前无法获得更广泛空间覆盖的改进的变化监测中受益。

具体发现文献:https://www.sciencedirect.com/science/article/pii/S1040618214002043?via%3Dihub

https://doi.org/10.1016/j.quaint.2014.03.060

降水相关指数

http://etccdi.pacificclimate.org/software.shtml

  1. Rx1day, Monthly maximum 1-day precipitation:

    Let RRij be the daily precipitation amount on day i in period j. The maximum 1-day value for period j are:

    Rx1dayj = max (RRij)

  2. Rx5day, Monthly maximum consecutive 5-day precipitation:

    Let RRkj be the precipitation amount for the 5-day interval ending k, period j. Then maximum 5-day values for period j are:

    Rx5dayj = max (RRkj)

  3. SDII Simple pricipitation intensity index: Let RRwj be the daily precipitation amount on wet days, w (RR ≥ 1mm) in period j. If Wrepresents number of wet days in j, then:

  4. R10mm Annual count of days when PRCP≥ 10mm: Let RRij be the daily precipitation amount on day i in period j. Count the number of days where:

    RRij ≥ 10mm

  5. R20mm Annual count of days when PRCP≥ 20mm: Let RRij be the daily precipitation amount on day i in period j. Count the number of days where:

    RRij ≥ 20mm

  6. Rnnmm Annual count of days when PRCP≥ nnmm, nn is a user defined threshold: Let RRij be the daily precipitation amount on day i in period j. Count the number of days where:

    RRij ≥ nnmm

  7. CDD. Maximum length of dry spell, maximum number of consecutive days with RR < 1mm: Let RRij be the daily precipitation amount on day iin period j. Count the largest number of consecutive days where:

    RRij < 1mm

  8. CWD. Maximum length of wet spell, maximum number of consecutive days with RR ≥ 1mm: Let RRij be the daily precipitation amount on day iin period j. Count the largest number of consecutive days where:

    RRij ≥ 1mm

  9. R95pTOT. Annual total PRCP when RR > 95p. Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1.0mm) in period i and let RRwn95 be the 95th percentile of precipitation on wet days in the 1961-1990 period. If W represents the number of wet days in the period, then:

  1. R99pTOT. Annual total PRCP when RR > 99p: Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1.0mm) in period i and let RRwn99 be the 99th percentile of precipitation on wet days in the 1961-1990 period. If W represents the number of wet days in the period, then:
  1. PRCPTOT. Annual total precipitation in wet days: Let RRij be the daily precipitation amount on day i in period j. If I represents the number of days in j, then

References


github 程序

M. Iturbide, J. Bedia, S. Herrera, J. Baño-Medina, J. Fernández, M.D. Frías, R. Manzanas, D. San-Martín, E. Cimadevilla, A.S. Cofiño and JM Gutiérrez (2019) The R-based climate4R open framework for reproducible climate data access and post-processing. Environmental Modelling & Software, 111, 42-54. DOI: /10.1016/j.envsoft.2018.09.009

https://github.com/SantanderMetGroup/notebooks

直接数据的下载:
http://etccdi.pacificclimate.org/data.shtml

The extreme precipitation indices used can be divided into two types (Liu et al., 2013; Wang et al., 2013a,b,c). One is precipitation indices, including PRCPTOT, R95p, R99p, RX1 day, RX5 day and SDII. The other type is the number of days of precipitation, including R10 mm, R20 mm, R25 mm, CDD and CWD

具体定义查询climdex-indices

http://climate-modelling.canada.ca/climatemodeldata/climdex/

Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multi-model ensemble. Part 2: Future projections. J. Geophys. Res., [doi:10.1002/jgrd.50188](http://dx.doi.org/10.1002/jgrd.50188 "Links to websites not under the control of the Government of Canada, including those to our social media accounts, are provided solely for the convenience of our website visitors. We are not responsible for the accuracy, currency or reliability of the content of such websites. The Government of Canada does not offer any guarantee in that regard and is not responsible for the information found through these links, nor does it endorse the sites and their content.

Visitors should also be aware that information offered by non-Government of Canada sites to which this website links is not subject to the Privacy Act or the Official Languages Act and may not be accessible to persons with disabilities. The information offered may be available only in the language(s) used by the sites in question. With respect to privacy, visitors should research the privacy policies of these non-government websites before providing personal information.").

Table 1. Core Set of 27 Extreme Indices Recommended by the ETCCDI. The Index R1mm Marked With * is Defined by ETCCDI for a User Specified Threshold Which is Set to 1 mm for This Study

The indices are defined and described in detail in Klein Tank et al. [2009] and Zhang et al. [2011]. The indices fall roughly into four categories: (1) absolute indices, which describe, for instance, the hottest or coldest day of a year, or the annual maximum 1 day or 5 day precipitation rates; (2) threshold indices, which count the number of days when a fixed temperature or precipitation threshold is exceeded, for instance, frost days or tropical nights; (3) duration indices, which describe the length of wet and dry spells, or warm and cold spells; and (4) percentile‐based threshold indices, which describe the exceedance rates above or below a threshold which is defined as the 10th or 90th percentile derived from the 1961–1990 base period. The latter are referred to as percentile indices in the following. The complete set of 27 indices is summarized in Table 1.

Label Index Name Index Definition Units
TN10p Cold nights Let TNij be the daily minimum temperature on day i in period j and let TNin10 be the calendar day 10th percentile centered on a 5 day window. The percentage of days in a year is determined where TNij < TNin10 %
TX10p Cold days Let TXij be the daily maximum temperature on day i in period j and let TXin10 be the calendar day 10th percentile centered on a 5 day window. The percentage of days is determined where TXij < TXin10 %
TN90p Warm nights Let TNij be the daily minimum temperature on day i in period j and let TNin90 be the calendar day 90th percentile centered on a 5 day window. The percentage of days is determined where TNij > TNin90 %
TX90p Warm days Let TXij be the daily maximum temperature on day i in period j and let TXin90 be the calendar day 90th percentile centered on a 5 day window. The percentage of days is determined where TXij > TXin90 %
WSDI Warm spell duration Let TXij be the daily maximum temperature on day i in period j and let TXin90 be the calendar day 90th percentile centered on a 5 day window for the base period 1961–1990. Then the number of days per period is summed where, in intervals of at least 6 consecutive days: TXij > TXin90 days
CSDI Cold spell duration Let TNij be the daily minimum temperature on day i in period j and let TNin10 be the calendar day 10th percentile centered on a 5 day window for the base period 1961–1990. Then the number of days per period is summed where, in intervals of at least 6 consecutive days: TNij < TNin10 days
TXx Max TX Let TXx be the daily maximum temperatures in month k, period j. The maximum daily maximum temperature each month is then: TXxkj = max(TXxkj) °C
TXn Min TX Let TXn be the daily maximum temperature in month k, period j. The minimum daily maximum temperature each month is then: TXnkj = min(TXnkj) °C
TNx Max TN Let TNx be the daily minimum temperatures in month k, period j. The maximum daily minimum temperature each month is then: TNxkj = max(TNxkj) °C
TNn Min TN Let TNn be the daily minimum temperature in month k, period j. The minimum daily minimum temperature each month is then: TNnkj = min(TNnkj) °C
FD Frost days Let TN be the daily minimum temperature on day i in period j. Count the number of days where TNij < 0°C days
ID Ice days Let TX be the daily maximum temperature on day i in period j. Count the number of days where TXij < 0°C days
SU Summer days Let TX be the daily maximum temperature on day i in period j. Count the number of days where TXij > 25°C days
TR Tropical nights Let TN be the daily minimum temperature on day i in period j. Count the number of days where TNij > 20°C days
GSL Growing season length Let T be the mean temperature ((TN + TX)/2) on day i in period j. Count the number of days between the first occurrence of at least 6 consecutive days with T > 5°C and the first occurrence after 1st July (NH) or 1st January (SH) of at least 6 consecutive days with Tij < 5°C days
DTR Diurnal temperature range Let TN and TX be the daily minimum and maximum temperature respectively on day I in period j. If I represents the number of days in j, then: DTRj = [图片上传失败...(image-fbdc26-1561518921414)](TXij – TNij)/ I °C
RX1day Max 1 day precipitation Let PRij be the daily precipitation amount on day i in period j. The maximum 1 day value for period j are: RX1dayj = max (PRij) mm
RX5day Max 5 day precipitation Let PRkj be the precipitation amount for the 5 day interval ending k, period j. Then maximum 5 day values for period j are: RX5dayj = max (PRkj) mm
SDII Simple daily intensity Let PRwj be the daily precipitation amount on wet days, PR > = 1 mm in period j. If W represents number of wet days in j, then: SDIIj = ([图片上传失败...(image-663a6c-1561518921414)] PRwj) / W mm
R1mm* Number of wet days Let PRij be the daily precipitation amount on day i in period j. Count the number of days where PRij > 1 mm days
R10mm Heavy precipitation days Let PRij be the daily precipitation amount on day i in period j. Count the number of days where PRij > 10 mm days
R20mm Very heavy precipitation days Let PRij be the daily precipitation amount on day i in period j. Count the number of days where PRij > 20 mm days
CDD Consecutive dry days Let PRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days where PRij < 1 mm days
CWD Consecutive wet days Let PRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days where PRij > 1 mm days
R95p Very wet days Let PRwj be the daily precipitation amount on a wet day w (PR > = 1 mm) in period i and let PRwn95 be the 95th percentile of precipitation on wet days in the 1961–1990 period. If W represents the number of wet days in the period, then: R95pj = [图片上传失败...(image-e960d3-1561518921413)] PRwj, where PRwj > PRwn95 mm
R99p Extremely wet days Let PRwj be the daily precipitation amount on a wet day w (PR > = 1 mm) in period i and let PRwn99 be the 95th percentile of precipitation on wet days in the 1961–1990 period. If W represents the number of wet days in the period, then: R99pj = [图片上传失败...(image-ad69e8-1561518921413)] PRwj, where PRwj > PRwn99 mm
PRCPTOT Total wet‐day precipitation Let PRij be the daily precipitation amount on day i in period j. If I represents the number of days in j, then: PRCPTOTj = [图片上传失败...(image-c85055-1561518921412)] PRij mm

https://github.com/scivision/FClimDex

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容