得到featurecounts文件以后的分析

本次采用的是GSE66507的数据文件

前期使用trim进行数据清洗,STAR进行比对,featurecounts进行计数分析

Length 该区间的长度,最后一列的表头是你的输入文件的名称,代表的是这个meta-feature的表达量。

现在进行DESeq2差异分析

library(DESeq2)#载入包

data <- read.table("C:/Users/cendy/Desktop/counts.txt", header=TRUE, quote="\t",skip = 1)#读取数据


部分数据读取结果

#号开头的注释行,记录了运行的命令;Geneid开头的行是表头,Geneid代表统计的meta-features的名称,Chr,Start,End对应染色体上的位置,Strand代表正负链,由于一个基因有多个外显子构成,所以这里的染色体位置信息有多个,和外显子个数一一对应

sampleNames <- c("SRR1825955","SRR1825956","SRR1825957","SRR1825958","SRR1825959","SRR1825960","SRR1825961","SRR1825962","SRR1825963","SRR1825964","SRR1825965","SRR1825966","SRR1825967","SRR1825968","SRR1825969","SRR1825970","SRR2240578","SRR2240579","SRR2240580","SRR2240581","SRR2240582","SRR2240583","SRR2240584","SRR2240585","SRR2240586","SRR2240587","SRR2240588","SRR2240589","SRR2240590","SRR2240591","SRR2240592","SRR2240593","SRR2240594","SRR2240595","SRR2240596","SRR2240597","SRR2240598","SRR2240599","SRR2240600","SRR2240601","SRR2240602","SRR2240603","SRR2240604","SRR2240605","SRR2240606","SRR2240607","SRR2240608","SRR2240609","SRR2240610","SRR2240611","SRR2240612","SRR2240613","SRR2240614","SRR2240615","SRR2240616","SRR2240617","SRR2240618","SRR2240619","SRR2240620","SRR2240621","SRR2240622","SRR2240623","SRR2240624","SRR2240625","SRR2240626","SRR2240627","SRR2240628","SRR2240629","SRR2240630","SRR2240631","SRR2240632","SRR2240633","SRR2240634","SRR2240635","SRR2240636","SRR2240637","SRR2240638","SRR2240639","SRR2240640","SRR2240641","SRR2240642","SRR2240643","SRR2240644","SRR2240645","SRR2240646","SRR2240647")

# 前六列分别是Geneid Chr Start End Strand Length

# 我们要的是count数,所以从第七列开始

names(data)[7:92] <- sampleNames

countData <- as.matrix(data[7:92])

countData <- countData[rowMeans(countData)>1,]

rownames(countData) <- data$Geneid

database <- data.frame(name=sampleNames, condition=c("SRR1825955","SRR1825956","SRR1825957","SRR1825958","SRR1825959","SRR1825960","SRR1825961","SRR1825962","SRR1825963","SRR1825964","SRR1825965","SRR1825966","SRR1825967","SRR1825968","SRR1825969","SRR1825970","SRR2240578","SRR2240579","SRR2240580","SRR2240581","SRR2240582","SRR2240583","SRR2240584","SRR2240585","SRR2240586","SRR2240587","SRR2240588","SRR2240589","SRR2240590","SRR2240591","SRR2240592","SRR2240593","SRR2240594","SRR2240595","SRR2240596","SRR2240597","SRR2240598","SRR2240599","SRR2240600","SRR2240601","SRR2240602","SRR2240603","SRR2240604","SRR2240605","SRR2240606","SRR2240607","SRR2240608","SRR2240609","SRR2240610","SRR2240611","SRR2240612","SRR2240613","SRR2240614","SRR2240615","SRR2240616","SRR2240617","SRR2240618","SRR2240619","SRR2240620","SRR2240621","SRR2240622","SRR2240623","SRR2240624","SRR2240625","SRR2240626","SRR2240627","SRR2240628","SRR2240629","SRR2240630","SRR2240631","SRR2240632","SRR2240633","SRR2240634","SRR2240635","SRR2240636","SRR2240637","SRR2240638","SRR2240639","SRR2240640","SRR2240641","SRR2240642","SRR2240643","SRR2240644","SRR2240645","SRR2240646","SRR2240647"))

rownames(database) <- sampleNames

## 设置分组信息并构建dds对象

dds <- DESeqDataSetFromMatrix(countData, colData=database, design= ~ 1)

我们想要知道treatment的影响,其中sex和age是主要的变异来源,那么我们的公式则应该为design <- ~sex + age + treatment

公式中的波浪线应该在所有的代数式之前,从而告诉DESeq2在进行差异表达分析时,使用后面的公式。而公式中代数的名称应该与数据框中的列名相匹配。

此外,DESeq2还允许我们研究变异之间的交互作用。比如,我们想知道sex对于treatment的影响,那么我们的公式就应该是design <- ~ sex + age + treatment + sex:treatment

此处需要注意,因为我们关注的是sex对于treatment的交互作用,因此sex:treatment应该放在公式的最末尾

dds <- dds[ rowSums(counts(dds)) > 1, ]


## 使用DESeq函数估计离散度,然后差异分析获得res对象

dds <- DESeq(dds)

res <- results(dds)

write.csv(res, "C:/Users/cendy/Desktop/res_des_output.csv")

resdata <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized=TRUE)),by="row.names",sort=FALSE)

write.csv(resdata, "C:/Users/cendy/Desktop/all_des_output.csv", row.names=FALSE)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容