基于社区发现算法和图分析Neo4j解读《权力的游戏》上篇

摘自:http://www.toutiao.com/a6305624170701783298/
其中的分析和可视化是用Gephi做的,Gephi是非常流行的图分析工具。但作者觉得使用Neo4j来实现更有趣。

导入原始数据到Neo4j
原始数据可从网络上下载,格式如下:
Source,Target,Weight
Aemon,Grenn,5
Aemon,Samwell,31
Aerys,Jaime,18 ...

上面是人物关系的之邻接表以及关系权重。作者使用简单的数据模型:
(:Character {name})-[:INTERACTS]->(:Character {name})

带有标签Character的节点代表小说中的角色,用单向关系类型INTERACTS代表小说中的角色有过接触。节点属性会存储角色的名字name,两角色间接触的次数作为关系的属性:权重(weight)。
首先创建节点c,并做唯一限制性约束,c.name唯一,保证schema的完整性:
CREATE CONSTRAINT ON (c:Character) ASSERT c.name IS UNIQUE;

一旦约束创建即相应的创建索引,这将有助于通过角色的名字查询的性能。作者使用Neo4j的Cypher(Cypher是一种声明式图查询语言,能表达高效查询和更新图数据库)LOAD CSV语句导入数据:
LOAD CSV WITH HEADERS FROM "https://www.macalester.edu/~abeverid/data/stormofswords.csv" AS rowMERGE (src:Character {name: row.Source})MERGE (tgt:Character {name: row.Target})MERGE (src)-[r:INTERACTS]->(tgt)SET r.weight = toInt(row.Weight)

这样得到一个简单的数据模型:
CALL apoc.meta.graph

基于社区发现算法和图分析Neo4j解读《权力的游戏》上篇

图1 :《权力的游戏》模型的图。Character角色节点由INTERACTS关系联结
我们能可视化整个图形,但是这并不能给我们很多信息,比如哪些是最重要的人物,以及他们相互接触的信息:
MATCH p=(:Character)-[:INTERACTS]-(:Character) RETURN p

基于社区发现算法和图分析Neo4j解读《权力的游戏》上篇

图2

人物网络分析
作者使用Neo4j的图查询语言Cypher来做《权力的游戏》图分析,应用到了网络分析的一些工具,具体见《网络,人群和市场:关于高度连接的世界》。

人物数量
万事以简单开始。先看看上图上由有多少人物:
MATCH (c:Character) RETURN count(c)

count(c)

107

概要统计
统计每个角色接触的其它角色的数目:
MATCH (c:Character)-[:INTERACTS]->() WITH c, count(*) AS num RETURN min(num) AS min, max(num) AS max, avg(num) AS avg_characters, stdev(num) AS stdev

图(网络)的直径
网络的直径或者测底线或者最长最短路径:
// Find maximum diameter of network // maximum shortest path between two nodes
MATCH (a:Character), (b:Character) WHERE id(a) > id(b) MATCH p=shortestPath((a)-[:INTERACTS*]-(b)) RETURN length(p) AS len, extract(x IN nodes(p) | x.name) AS path ORDER BY len DESC LIMIT 4

我们能看到网络中有许多长度为6的路径。

最短路径
作者使用Cypher 的shortestPath函数找到图中任意两个角色之间的最短路径。让我们找出凯特琳·史塔克(Catelyn Stark )和卓戈·卡奥(Kahl Drogo)之间的最短路径:
// Shortest path from Catelyn Stark to Khal Drogo
MATCH (catelyn:Character {name: "Catelyn"}), (drogo:Character {name: "Drogo"}) MATCH p=shortestPath((catelyn)-[INTERACTS*]-(drogo)) RETURN p

基于社区发现算法和图分析Neo4j解读《权力的游戏》上篇

图3

所有最短路径
联结凯特琳·史塔克(Catelyn Stark )和卓戈·卡奥(Kahl Drogo)之间的最短路径可能还有其它路径,我们可以使用Cypher的allShortestPaths函数来查找:
// All shortest paths from Catelyn Stark to Khal Drogo
MATCH (catelyn:Character {name: "Catelyn"}), (drogo:Character {name: "Drogo"}) MATCH p=allShortestPaths((catelyn)-[INTERACTS*]-(drogo)) RETURN p

基于社区发现算法和图分析Neo4j解读《权力的游戏》上篇

图4

关键节点
在网络中,如果一个节点位于其它两个节点所有的最短路径上,即称为关键节点。下面我们找出网络中所有的关键节点:
// Find all pivotal nodes in network
MATCH (a:Character), (b:Character) MATCH p=allShortestPaths((a)-[:INTERACTS*]-(b)) WITH collect(p) AS paths, a, b MATCH (c:Character) WHERE all(x IN paths WHERE c IN nodes(x)) AND NOT c IN [a,b] RETURN a.name, b.name, c.name AS PivotalNode SKIP 490 LIMIT 10
从结果表格中我们可以看出有趣的结果:罗柏·史塔克(Robb)是卓戈·卡奥(Drogo)和拉姆塞·波顿(Ramsay)的关键节点。这意味着,所有联结卓戈·卡奥(Drogo)和拉姆塞·波顿(Ramsay)的最短路径都要经过罗柏·史塔克(Robb)。我们可以通过可视化卓戈·卡奥(Drogo)和拉姆塞·波顿(Ramsay)之间的所有最短路径来验证:
MATCH (a:Character {name: "Drogo"}), (b:Character {name: "Ramsay"}) MATCH p=allShortestPaths((a)-[:INTERACTS*]-(b)) RETURN p

基于社区发现算法和图分析Neo4j解读《权力的游戏》上篇

图5

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容