Seurat Weekly NO.09 ||UMAP图分不开怎么办?

在这里,与国际同行一起学习数据分析。

在单细胞数据分析过程中,往往需要看不同的参数下的数据表现,也往往需要循环某个列表(基因集或者分组),这时候向量化测试效率就比较高了。

向量(vector)是R编程里最底层也是最核心的结构,并且从广泛意义上的数据类型而言,R中的矩阵和数组甚至是列表都是向量。提升代码效率的有效途径便是向量化(vectorize),即将运算符或者函数作用在向量的每一个元素上的一种理念。

多个聚类的resolution参数:

library(Seurat)
library(SeuratData,lib.loc = 'F:\\EE\\software\\R\\R-4.0.2\\library')
library(pbmc3k.SeuratData,lib.loc = 'F:\\EE\\software\\R\\R-4.0.2\\library')   
library(clustree,lib.loc = 'F:\\EE\\software\\R\\R-4.0.2\\library')    
.libPaths()
library(tidyverse)
library(cowplot)
pbmc3k.final <- FindClusters(pbmc3k.final,dims=1:20,resolution = seq(from=0,by=.2,length=10))
clustree(pbmc3k.final)

分群可视化,其实是map函数的应用。

Idents(pbmc3k.final) <- "seurat_annotations"
p=list()
p<- map(c(levels(Idents(pbmc3k.final))),function(x){DimPlot(pbmc3k.final, cells.highlight = CellsByIdentities(object = pbmc3k.final, idents = x))})
plot_grid(plotlist = p)

下面来看另一个例子:调节UMAP结构。那么我们就看看可视化有什么参数可以调节:

  • 3D
  • 调RunUMAP的参数
  • 换可视化方法

今天我们来看看n.neighbors和epochs,negative.sample.rate 这几个函数的影响:

map(c(2,seq(from=5,by=50,length=10)) , function(x) { pbmc3k.final %>%  RunUMAP(n.neighbors = x,n.epochs=200,dims = 1:20) %>% DimPlot()}) %>% cowplot::plot_grid(plotlist = .)

c(2,seq(from=5,by=50,length=10) )
 [1]   2   5  55 105 155 205 255 305 355 405 455
map(c(2,seq(from=5,by=50,length=10)) , function(x) { pbmc3k.final %>%  RunUMAP(n.neighbors = 50,n.epochs=x,dims = 1:20) %>% DimPlot()}) %>% cowplot::plot_grid(plotlist = .)

map(c(2,seq(from=1,by=5,length=10)) , function(x) { pbmc3k.final %>%  RunUMAP(n.neighbors = 50,n.epochs=500,negative.sample.rate = x,dims = 1:20) %>% DimPlot()}) %>% cowplot::plot_grid(plotlist = .)

好了,节目的最后,放一张大佬的小道消息:


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容