Chapter 5.1 Pandas的数据结构

数据结构其实就是Series和DataFrame。

1. Series

series是一个像数组一样的一维序列,并伴有一个数组表示label,叫做index。创建一个series的方法也很简单:

series_1 = pd.Series([10,20,30,40])
series_1
#result:
0    10
1    20
2    30
3    40
dtype: int64

左边是index,右边是value

series_1.values
#result: array([10, 20, 30, 40], dtype=int64)
series_1.index
#result: RangeIndex(start=0, stop=4, step=1)

当然我们也可以自己指定index的label

series_2 = pd.Series([-1,2,3,-4],index=['a','b','c','d'])
series_2
#result: 
a   -1
b    2
c    3
d   -4
dtype: int64

可以根据索引来选取或更改Series中的元素。

series_2['a'] = 10
series_2['a']
series_2[['b','c','d']]

可以对Series使用numpy函数。

import numpy as np
np.exp(series_2)

另一种看待series的方法,它是一个长度固定,有顺序的dict,从index映射到value。在很多场景下,可以当做dict来用
可以直接用dict来创建series

pandas中的isnull和notnull函数可以用来检测缺失数据

index可以直接被更改。

2. Dataframe

DataFrame表示一个长方形表格,并包含排好序的列,每一列都可以是不同的数值类型(数字,字符串,布尔值)。DataFrame有行索引和列索引(row index, column index);可以看做是分享所有索引的由series组成的字典。数据是保存在一维以上的区块里的。

创建dataframe

构建一个dataframe的方法,用一个dcit,dict里的值是list

data = {'name': ['amy','bob','catherine','david'],
        'country': ['China','USA','UK','Russian'],
        'age': [17,19,20,21]}
df = pd.DataFrame(data)
df
image.png

对于一个较大的DataFrame,用head方法会返回前5行(注:这个函数在数据分析中经常使用,用来查看表格里有什么东西)

可以指定列的顺序。

从DataFrame里提取一列的话会返回series格式,可以以属性或是dict一样的形式来提取。


image.png

对于行,要用在loc属性里用 位置或名字 来取元素:

df.loc[3]
image.png

列值也能通过赋值改变。

如果把list或array赋给column的话,长度必须符合DataFrame的长度。如果把一二series赋给DataFrame,会按DataFrame的index来赋值,不够的地方用缺失数据来表示

删除列用del

另外DataFrame也可以向numpy数组一样做转置

df.T

如果DataFrame的index和column有自己的name属性,也会被显示

3. Index Objects (索引对象)

pandas的Index Objects (索引对象)负责保存axis labels和其他一些数据(比如axis name或names)。一个数组或其他一个序列标签,只要被用来做构建series或DataFrame,就会被自动转变为index
创建Index对象

labels = pd.Index(np.arange(3))
labels

还有很多其他函数。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容