Linearly Replaceable Filters for Deep Network Channel Pruning 编辑:牛涛
Neural Network Pruning with Residual-Connections and Limited-Data 编辑:牛涛
LAYER-ADAPTIVE SPARSITY FOR THE MAGNITUDE-BASED PRUNING 编辑:牛涛
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning 编辑:牛涛
Model Compression Based on Differentiable Network Channel Pruning 编辑:牛涛
Filter Pruning by Switching to Neighboring CNNs With Good Attributes 编辑:牛涛
GDP: Stabilized Neural Network Pruning via Gates with Differentiable Polarization 编辑:牛涛
Feature Statistics Guided Efficient Filter Pruning 编辑:牛涛
Filter Sketch for Network Pruning 编辑:牛涛
Accelerate CNNs from Three Dimensions: A Comprehensive Pruning Framework 编辑:牛涛
Manifold Regularized Dynamic Network Pruning 编辑:牛涛
Network pruning via Performance Maximization 编辑:牛涛
Attention-based pruning for shift networks 编辑:牛涛
HRank: Filter Pruning using High-Rank Feature Map 编辑:牛涛
Holistic Filter Pruning for Efficient Deep Neural Networks 编辑:牛涛
Dynamic Channel Pruning: Feature Boosting and Suppression 编辑:牛涛
PRUNING FILTER IN FILTER 编辑:牛涛
Neuron-level Structured Pruning using Polarization Regularizer 编辑:牛涛
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression 编辑:牛涛
Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration 编辑:牛涛
DMCP: Differentiable Markov Channel Pruning for Neural Networks 编辑:牛涛
MORE-SIMILAR-LESS-IMPORTANT: FILTER PRUNING VIA KMEANS CLUSTERING 编辑:牛涛
Soft and Hard Filter Pruning via Dimension Reduction 编辑:牛涛
AutoPruning for Deep Neural Network with Dynamic Channel Masking 编辑:牛涛
Softer Pruning, Incremental Regularization 编辑:牛涛
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks 编辑:牛涛
An Entropy-based Pruning Method for CNN Compression 编辑:牛涛
SCOP: Scientific Control for Reliable Neural Network Pruning 编辑:牛涛
DropNet: Reducing Neural Network Complexity via Iterative Pruning 编辑:牛涛
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks 编辑:牛涛
Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks 编辑:牛涛
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration 编辑:牛涛
SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY 编辑:牛涛
AUTOPRUNING FOR DEEP NEURAL NETWORK WITH DYNAMIC CHANNEL MASKING 编辑:牛涛
Channel Pruning via Automatic Structure Search 编辑:牛涛
Coreset-Based Neural Network Compression 编辑:牛涛
AMC: AutoML for Model Compression and Acceleration on Mobile Devices 编辑:牛涛
Accelerating Convolutional Networks via Global & Dynamic Filter Pruning 编辑:牛涛
Discrimination-aware Channel Pruning for Deep Neural Networks 编辑:牛涛
RETHINKING THE VALUE OF NETWORK PRUNING 编辑:牛涛
Channel Pruning for Accelerating Very Deep Neural Networks 编辑:牛涛
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression 编辑:牛涛
Dynamic Network Surgery for Efficient DNNs 编辑:牛涛
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning 编辑:牛涛
Learning Efficient Convolutional Networks through Network Slimming 编辑:牛涛
Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures 编辑:牛涛
PRUNING FILTERS FOR EFFICIENT CONVNETS 编辑:牛涛
Learning both Weights and Connections for Efficient Neural Networks 编辑:牛涛
Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks 编辑:牛涛
Learning Structured Sparsity in Deep Neural Networks 编辑:牛涛
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning 编辑:牛涛