目录

Linearly Replaceable Filters for Deep Network Channel Pruning                                    编辑:牛涛


Neural Network Pruning with Residual-Connections and Limited-Data                           编辑:牛涛


LAYER-ADAPTIVE SPARSITY FOR THE MAGNITUDE-BASED PRUNING                  编辑:牛涛


EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning                       编辑:牛涛


Model Compression Based on Differentiable Network Channel Pruning                         编辑:牛涛


Filter Pruning by Switching to Neighboring CNNs With Good Attributes                          编辑:牛涛


GDP: Stabilized Neural Network Pruning via Gates with Differentiable Polarization       编辑:牛涛


Feature Statistics Guided Efficient Filter Pruning                                                             编辑:牛涛


Filter Sketch for Network Pruning                                                                                     编辑:牛涛


Accelerate CNNs from Three Dimensions: A Comprehensive Pruning Framework         编辑:牛涛


Manifold Regularized Dynamic Network Pruning                                                             编辑:牛涛


Network pruning via Performance Maximization                                                              编辑:牛涛


Attention-based pruning for shift networks                                                                       编辑:牛涛


HRank: Filter Pruning using High-Rank Feature Map                                                      编辑:牛涛


Holistic Filter Pruning for Efficient Deep Neural Networks                                               编辑:牛涛


Dynamic Channel Pruning: Feature Boosting and Suppression                                      编辑:牛涛


PRUNING FILTER IN FILTER                                                                                          编辑:牛涛


Neuron-level Structured Pruning using Polarization Regularizer                                     编辑:牛涛


Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression        编辑:牛涛


Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration   编辑:牛涛


DMCP: Differentiable Markov Channel Pruning for Neural Networks                               编辑:牛涛


MORE-SIMILAR-LESS-IMPORTANT: FILTER PRUNING VIA KMEANS CLUSTERING 编辑:牛涛


Soft and Hard Filter Pruning via Dimension Reduction                                                     编辑:牛涛


AutoPruning for Deep Neural Network with Dynamic Channel Masking                           编辑:牛涛


Softer Pruning, Incremental Regularization                                                                       编辑:牛涛


Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks                        编辑:牛涛


An Entropy-based Pruning Method for CNN Compression                                               编辑:牛涛


SCOP: Scientific Control for Reliable Neural Network Pruning                                         编辑:牛涛


DropNet: Reducing Neural Network Complexity via Iterative Pruning                               编辑:牛涛


Global Sparse Momentum SGD for Pruning Very Deep Neural Networks                        编辑:牛涛


Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks        编辑:牛涛


Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration    编辑:牛涛


SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY     编辑:牛涛


AUTOPRUNING FOR DEEP NEURAL NETWORK WITH DYNAMIC CHANNEL MASKING    编辑:牛涛


Channel Pruning via Automatic Structure Search                                                              编辑:牛涛


Coreset-Based Neural Network Compression                                                                   编辑:牛涛


AMC: AutoML for Model Compression and Acceleration on Mobile Devices                     编辑:牛涛


Accelerating Convolutional Networks via Global & Dynamic Filter Pruning                       编辑:牛涛


Discrimination-aware Channel Pruning for Deep Neural Networks                                    编辑:牛涛


RETHINKING THE VALUE OF NETWORK PRUNING                                                      编辑:牛涛


Channel Pruning for Accelerating Very Deep Neural Networks                                          编辑:牛涛


ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression                 编辑:牛涛


Dynamic Network Surgery for Efficient DNNs                                                                    编辑:牛涛


PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning                         编辑:牛涛


Learning Efficient Convolutional Networks through Network Slimming                             编辑:牛涛


Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures    编辑:牛涛


PRUNING FILTERS FOR EFFICIENT CONVNETS                                                          编辑:牛涛


Learning both Weights and Connections for Efficient Neural Networks                            编辑:牛涛


Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks                          编辑:牛涛


Learning Structured Sparsity in Deep Neural Networks                                                    编辑:牛涛


MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning                  编辑:牛涛


©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 渲染是一个令人着迷的方向,可学习渲染着实有不小的难度。 渲染技术不断在发展,各种技术层出不穷,相关英文资料(中文相...
    吾爱学编程阅读 7,229评论 1 2
  • 第1章 机器学习概览第2章 一个完整的机器学习项目第3章 分类第4章 训练模型第5章 支持向量机第6章 决策树第7...
    HBU_DAVID阅读 5,582评论 0 1
  • 深度学习使得很多计算机视觉任务的性能达到了一个前所未有的高度。不过,复杂的模型固然具有更好的性能,但是高额的存储空...
    CodePlayHu阅读 40,733评论 8 55
  • 1.研究背景 对模型预测精度无明显影响 压缩模型的参数数量、深度来降低模型空间复杂度全连接层参数多,模型大小由全连...
    爱吃西瓜的菜鸟阅读 8,997评论 0 2
  • 学术菜鸡的论文统计,请无视 2015年 #1.Learning both Weights and Connecti...
    MoreanP阅读 6,691评论 0 4

友情链接更多精彩内容