pytorch DQN强化学习

1.gif
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import gym

# Hyper Parameters
BATCH_SIZE = 32
LR = 0.01 # learning rate
EPSILON = 0.9 # greedy policy
GAMMA = 0.9 # reward discount
TARGET_REPLACE_ITER = 100 # target update frequency
MEMORY_CAPACITY = 2000
env = gym.make('CartPole-v0')
env = env.unwrapped
N_ACTIONS = env.action_space.n
N_STATES = env.observation_space.shape[0]

class Net(nn.Module):
    def __init__(self,):
        super(Net,self).__init__()
        self.fc1 = nn.Linear(N_STATES,10)
        self.fc1.weight.data.normal_(0,0.1) # initialization
        self.out = nn.Linear(10,N_STATES)
        self.out.weight.data.normal_(0,0.1) # initialization
    def forward(self,x):
        x = self.fc1(x)
        x = F.relu(x)
        actions_value = self.out(x)
        return actions_value

class DQN(object):
    def __init__(self):
        self.eval_net = Net()
        self.target_net = Net()
        self.learn_step_counter = 0 # for target updating
        self.memory_counter = 0 # for storing memory
        self.memory = np.zeros((MEMORY_CAPACITY,N_STATES*2+2)) # initailize memory
        self.optimizer = torch.optim.Adam(self.eval_net.parameters(),lr=LR)
        self.loss_func = nn.MSELoss()

    def choose_action(self,x):
        x = Variable(torch.unsqueeze(torch.FloatTensor(x),0))
        if np.random.uniform() < EPSILON: # greedy
            actions_value = self.eval_net.forward(x)
            action = torch.max(actions_value,1)[1].data.numpy()[0,0]
        else:
            action = np.random.randint(0,N_ACTIONS)
        return action

    def store_transition(self,s,a,r,s_):
        transition = np.hstack((s,[a,r],s_))
        # replace the old memory with new memory
        index = self.memory_counter % MEMORY_CAPACITY
        self.memory[index,:] = transition
        self.memory_counter += 1

    def learn(self):
        # target net update
        if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
            self.target_net.load_state_dict(self.eval_net.state_dict())
        sample_index = np.random.choice(MEMORY_CAPACITY,BATCH_SIZE)
        b_memory = self.memory[sample_index,:]
        b_s = Variable(torch.FloatTensor(b_memory[:,:N_STATES]))
        b_a = Variable(torch.LongTensor(b_memory[:,N_STATES:N_STATES+1].astype(int)))
        b_r = Variable(torch.FloatTensor(b_memory[:,N_STATES+1:N_STATES+2]))
        b_s_ = Variable(torch.FloatTensor(b_memory[:,-N_STATES:]))

        q_eval = self.eval_net(b_s).gather(1,b_a)
        q_next = self.target_net(b_s_).detach()
        q_target = b_r + GAMMA * q_next.max(1)[0]
        loss = self.loss_func(q_eval,q_target)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

dqn = DQN()

print('\nCollecting experience...')
for i_episode in range(400):
    s = env.reset()
    while True:
        env.render()
        a = dqn.choose_action(s)
        # take action
        s_,r,done,info = env.step(a)

        # modify the reward
        x,x_dot,theta,theta_dot = s_
        r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
        r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
        r = r1 + r2

        dqn.store_transition(s,a,r,s_)
        if dqn.memory_counter > MEMORY_CAPACITY:
            dqn.learn()
        if done:
            break
        s = s_

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 强化学习所学习的,是当我们处在某个环境下,我们应该做的最好的决策是什么? 假设我们所处的状态(State)是有限的...
    程序喵华仔阅读 2,107评论 0 3
  • Preface 这里开始强化学习的理论内容。虽然比较简单,但是强化学习的入门基础。在有监督学习里面,我们有明确的目...
    Salon_sai阅读 7,163评论 0 2
  • 这年的最后一天格外的安静,至少到现在为止是这样的。依旧在停课的日子睡到自然醒,太阳出乎意外的如此大方,索性把近一月...
    六孑箫阅读 264评论 0 2
  • 1.责权利心法:责任、权力和利益,必须要同时对等的发生在一个主体身上,激励每个主体自动自发的实现自转。 2.分权机...
    423429d90f38阅读 156评论 0 1
  • 找了那么多天的工作,昨天终于有一家工作拒绝我了,我迷失了自己,我不知道自己要什么?奥尔夫音乐是我的喜欢,可是我并没...
    名字都占用了阅读 169评论 1 1