Layers » 融合层 Merge


[source]

Add

keras.layers.Add()

计算输入张量列表的和。

它接受一个张量的列表, 所有的张量必须有相同的输入尺寸, 然后返回一个张量(和输入张量尺寸相同)。

例子

import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
# 相当于 added = keras.layers.add([x1, x2])
added = keras.layers.Add()([x1, x2])  

out = keras.layers.Dense(4)(added)
model = keras.models.Model(inputs=[input1, input2], outputs=out)


[source]

Subtract

keras.layers.Subtract()

计算两个输入张量的差。

它接受一个长度为 2 的张量列表, 两个张量必须有相同的尺寸,然后返回一个值为 (inputs[0] - inputs[1]) 的张量, 输出张量和输入张量尺寸相同。

例子

import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
# 相当于 subtracted = keras.layers.subtract([x1, x2])
subtracted = keras.layers.Subtract()([x1, x2])

out = keras.layers.Dense(4)(subtracted)
model = keras.models.Model(inputs=[input1, input2], outputs=out)


[source]

Multiply

keras.layers.Multiply()

计算输入张量列表的(逐元素间的)乘积。

它接受一个张量的列表, 所有的张量必须有相同的输入尺寸, 然后返回一个张量(和输入张量尺寸相同)。


[[source]][source]

Average

keras.layers.Average()

计算输入张量列表的平均值。

它接受一个张量的列表, 所有的张量必须有相同的输入尺寸, 然后返回一个张量(和输入张量尺寸相同)。


[source]

Maximum

keras.layers.Maximum()

计算输入张量列表的(逐元素间的)最大值。

它接受一个张量的列表, 所有的张量必须有相同的输入尺寸, 然后返回一个张量(和输入张量尺寸相同)。


[source]

Concatenate

keras.layers.Concatenate(axis=-1)

连接一个输入张量的列表。

它接受一个张量的列表, 除了连接轴之外,其他的尺寸都必须相同, 然后返回一个由所有输入张量连接起来的输出张量。

参数

  • axis: 连接的轴。
  • ****kwargs**: 层关键字参数。

[source]

Dot

keras.layers.Dot(axes, normalize=False)

计算两个张量之间样本的点积。

例如,如果作用于输入尺寸为 (batch_size, n) 的两个张量 ab, 那么输出结果就会是尺寸为 (batch_size, 1) 的一个张量。 在这个张量中,每一个条目 ia[i]b[i] 之间的点积。

参数

  • axes: 整数或者整数元组, 一个或者几个进行点积的轴。
  • normalize: 是否在点积之前对即将进行点积的轴进行 L2 标准化。 如果设置成 True,那么输出两个样本之间的余弦相似值。
  • ****kwargs**: 层关键字参数。

add

keras.layers.add(inputs)

Add 层的函数式接口。

参数

  • inputs: 一个输入张量的列表(列表大小至少为 2)。
  • ****kwargs**: 层关键字参数。

返回

一个张量,所有输入张量的和。

例子

import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
added = keras.layers.add([x1, x2])

out = keras.layers.Dense(4)(added)
model = keras.models.Model(inputs=[input1, input2], outputs=out)


subtract

keras.layers.subtract(inputs)

Subtract 层的函数式接口。

参数

  • inputs: 一个列表的输入张量(列表大小准确为 2)。
  • ****kwargs**: 层的关键字参数。

返回

一个张量,两个输入张量的差。

例子

import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
subtracted = keras.layers.subtract([x1, x2])

out = keras.layers.Dense(4)(subtracted)
model = keras.models.Model(inputs=[input1, input2], outputs=out)


multiply

keras.layers.multiply(inputs)

Multiply 层的函数式接口。

参数

  • inputs: 一个列表的输入张量(列表大小至少为 2)。
  • ****kwargs**: 层的关键字参数。

返回

一个张量,所有输入张量的逐元素乘积。


average

keras.layers.average(inputs)

Average 层的函数式接口。

参数

  • inputs: 一个列表的输入张量(列表大小至少为 2)。
  • ****kwargs**: 层的关键字参数。

返回

一个张量,所有输入张量的平均值。


maximum

keras.layers.maximum(inputs)

Maximum 层的函数式接口。

参数

  • inputs: 一个列表的输入张量(列表大小至少为 2)。
  • ****kwargs**: 层的关键字参数。

返回

一个张量,所有张量的逐元素的最大值。


concatenate

keras.layers.concatenate(inputs, axis=-1)

Concatenate 层的函数式接口。

参数

  • inputs: 一个列表的输入张量(列表大小至少为 2)。
  • axis: 串联的轴。
  • ****kwargs**: 层的关键字参数。

返回

一个张量,所有输入张量通过 axis 轴串联起来的输出张量。


dot

keras.layers.dot(inputs, axes, normalize=False)

Dot 层的函数式接口。

参数

  • inputs: 一个列表的输入张量(列表大小至少为 2)。
  • axes: 整数或者整数元组, 一个或者几个进行点积的轴。
  • normalize: 是否在点积之前对即将进行点积的轴进行 L2 标准化。 如果设置成 True,那么输出两个样本之间的余弦相似值。
  • ****kwargs**: 层的关键字参数。

返回

一个张量,所有输入张量样本之间的点积。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容