重组抗体,也称为基因工程抗体,是指通过DNA重组技术将抗体相应的基因序列根据需要进行改造和重组,并构建在质粒上,再通过蛋白外源表达技术将构建好的质粒转染/转化入适合的宿主细胞表达获得的抗体。重组抗体很好的解决了动物源抗体引起的人体排斥反应,使得抗体实现人源化,使抗体的效能更为完善。
抗体生产的三个阶段
抗体广泛应用于疾病的诊断和治疗,是研究和应用领域最有价值的研究对象之一。抗体制备技术经历了三个阶段,第一阶段,通过抗原免疫高等动物,从动物的血清中纯化获得抗体,该抗体为多克隆抗体;第二阶段,杂交瘤技术问世,通过将无限增殖的骨髓瘤细胞与产生抗体的B淋巴细胞融合生产出针对单一抗原决定簇的单克隆抗体;第三阶段,通过基因工程技术改造动物生产的单克隆抗体的基因序列,使单抗性能更加符合应用需要,并能通过大规模细胞培养获得,该阶段抗体为重组抗体。
重组抗体有哪些类型?
重组抗体分为五大类:嵌合抗体、人源化抗体、全人源化抗体、小分子抗体、双特异性抗体
嵌合抗体
抗体的恒定区和可变区分别来源于不同的物种,常见的嵌合抗体是将动物源抗体的可变区与人源抗体的恒定区结合。
嵌合抗体的特点:
1. 抗体可变区为动物源区域,保留了抗体对抗原的特异性和亲和性;
2. 抗体有近70%的部分是人源的,很大程度上降低了抗体的异源性,其中人源性Fc片段能有效介导ADCC(抗体依赖性细胞介导的细胞毒效应)和CDC(补体依赖的淋巴细胞毒效应)作用;
3. 可以根据需要选择不同的抗体类型、亚型、大小、修饰位点等;
4. 通过成熟的质粒构建体系及蛋白表达平台,可高效大量的获得目的抗体。
嵌合抗体的生产方式:
①免疫动物,获得杂交瘤细胞
②杂交瘤细胞测序,获得抗体可变区序列
③选择人源恒定去亚型
④构建重组表达质粒
⑤转入合适的宿主细胞表达
⑥抗体纯化及检测
人源化抗体
将人抗体的CDR区域替换成动物源单抗的CDR,也称CDR嫁接抗体。
CDR:即互补决定区(complementarity-determining regions),抗体每个可变区含有三个氨基酸顺序超变区,这些超变区是抗原的结合位点,与抗原决定簇结构互补,被称为CDR。可变区里其他氨基酸作为骨架支持部分,称为框架残基(Framework Residue)。
人源化抗体特点:
1. 人源化抗体在嵌合抗体的基础上将抗体中人源性区域进一步扩大,人源化比例可达80%-90%,使得抗体在应用过程中降低人体的异源排斥反应;
2. CDR与抗原结合过程受到FR区域的影响,动物源CDR与人源Fr结合,可能会改变抗体原有CDR的空间结构,进而降低重组抗体与抗原的亲和力。在设计人源化抗体时,可将人源FR区域的关键性氨基酸残基更改为动物源FR,以减少对CDR结构域的影响。
人源化抗体生产方式:
全人源化抗体
采用基因敲出技术将动物抗体基因敲除,造成动物抗体基因缺失,将人类抗体基因通过转基因或转染色体技术,移至抗体基因缺失动物中,通过动物表达人类抗体,达到抗体完全人源化。
采用动物基因敲除和插入的方式获得抗体,操作难度大,成本高,并且依然存在人体排斥反应,噬菌体展示技术应运而生。将人抗体的可变区基因插入到噬菌体外壳蛋白结构基因的适当位置,人抗体可变区随噬菌体外壳蛋白的表达而表达,同时,随噬菌体的重新组装而展示到噬菌体表面。再通过展示库筛选和细胞表达获得全人源抗体。
重组抗体的载体如何选择?
全人源化抗体特点:
全人源化抗体对人体的免疫原性极小,是抗体药研发最重要的对象,在疾病和癌症的治疗中具备广泛的应用,非常具备研究和生产价值。
全人源化抗体生产方式:
小分子抗体
小分子抗体顾名思义是分子量较小的抗体,一般为完整Ig的一部分,现有的小分子抗体有Fab、Fv、 scFv、SdAb、微抗体、纳米抗体。
重组抗体的类型及生产流程
小分子抗体特点:
小分子抗体分子量大小只有完整Ig大小的1/12~1/2,穿透性强,同时具备抗原亲和力,并且可通过基因工程系统来操作编辑,通过各种重组蛋白表达系统来大量生产。
小分子抗体生产方式:
双特异性抗体
具备两种特异性抗原结合位点的抗体,可同时与两种抗原结合,例如可同时结合靶细胞(癌症细胞)和效应细胞(T细胞),定向介导效应细胞对靶细胞的杀伤作用,是抗体药物领域的重要研究对象,在肿瘤治疗方面具有卓越的成效。
双特异性抗体特点:
1. 拥有两种特异性抗原结合位点,作为抗体药物,是治疗肿瘤的“抗体炸弹”,比普通的抗体药具有更强的导向性、更强的治疗效果,是最为理想的肿瘤治疗药物;
2. 自然状态不存在,只能通过人工制备获得。
双特异性抗体生产方式:
义翘神州推出大规模重组抗体生产服务,服务周期大概在4-10周;
服务内容可以查看:https://cn.sinobiological.com/services/large-scale-antibody-production-service里面有更详尽的内容服务。