多传感器融合同步标定技术整理

所谓的时间硬同步,就是通过唯一的时钟源给各传感器 提供相同的基准时间,各传感器根据提供的基准时间校准各自的时钟时间,从硬件上实现时间同步,也就是我们说的统一时钟源,目前自动驾驶中主流时间同步是以GPS时间为基准时间 ,采用PTP/gPTP时钟同步协议来完成各传感器之间的时间同步,PTP 前提是需要交换机支持PTP协议,才能实现高精度同步。 与PTP同时出现的还有一种NTP,即网络时间协议,不同的是PTP是在硬件级实现的,NTP是在应用层级别实现的

2.由于每种传感器的采样频率不一致,如lidar通常为10Hz,camera通常为25/30Hz,不同传感器之间的数据传输还存在一定的延迟,那么可以通过寻找相邻时间戳的方法找到最近邻帧,如果误差很大,可以采用硬同步触发,调整传感器的固有频率来达到一致性

3. 时间软同步,分为帧率具有整数倍数关系的传感器之间和非整数倍关系传感器之间的时间对齐,整数倍的比较好处理,非整数倍的可以用内插外推法,主要利用两个传感器帧上的时间标签,计算出时间差,然后通过包含有运动信息的目标帧与时间差结合,推算出新的帧时各个目标的位置,并于原有的两帧 之间建立新的帧。

4. 空间同步,也就是不同传感器坐标系下的测量值转换到同一坐标系下,通俗理解为传感器在整车坐标系下的标定参数,其中一部分就是运动补偿,比如纯估计补偿,用括ICP(Iterative Closest Point,迭代最近点算法)以及其相关的变种(VICP)来线性补偿,但这是基于匀速运动假设基础上的

5.运动补偿方法之里程计辅助方法,是利用IMU信息对激光数据中每个激光点对应的传感器位姿进行求解,即求 解对应时刻传感器的位姿,然后根据求解的位姿把所有激光点转换到同一坐标系下,然后封装成 一帧激光数据,发布出去(可以理解为激光点云 的去畸变)

1)通过IMU与点云数据时间对齐,然后对每个点进行速度补偿,通过时间戳进行线性插值,然后将所有点云数据转换到初始点云的IMU坐标下

2)与上一帧的去完畸变的点云数据进行帧间匹配,计算激光姿态。并通过计算的姿态对每个点云进行线性补偿,将所有的点云数据根据时间戳转换到最 后一个点云数据时间戳下,即完成了里程计方法的补 偿

6.传感器标定分为单传感器的标定和多传感器之间的标定,主要是外参标定和内参标定,目的是为了保证确定不同传感器的空间关系,并统一在整车坐标系下,这样就能获取不同传感器采集的同一障碍物的信息,便于后续融合处理

7. 一般传感器安装完,需要对车辆进行整车的标定。标定分为基于标定设备的标定和基于自然场景的标定。基于标定设备的比较容易理解,如 棋盘格, aruco码或April tag,采用这种方式,需要很大的整车标定间和摆正器,

8. 基于自然场景的标定方法,是利用场景中静止的物体(如树木、电线杆、路灯杆、交 通标识牌等)和清晰车道线进行标定

9.多相机标定主要是长中短焦距标定,相机和Lidar标定,最常见的激光与相机联合标定方法是将激光产生的点云投影到图像内,然后寻找标记物(可能是标定设备,也可能是具有明显边缘的静止物体),查看其边缘轮廓对齐情况,如果在一定距离内(一般选50-60m) 的目标,点云边缘和图像边缘能够重合,则可以证明标定结果的精度很高

10.标定相机的时候为什么会有标定板,标定板为什么这么黑白棋盘设计,具体怎么做的,不知道有没有大牛解答一下

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容