Python数据分析_Pandas03_数据整理

主要内容:

  • 增删行列
  • 修改数值:apply lambda
  • 描述统计
  • 合并、补齐数据
  • 极端值处理

起始数据框

In [76]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

In [77]: df
Out[77]:
                   A         B         C         D
2013-01-01 -0.411674  0.273549  0.629843  1.881497
2013-01-02  1.240512  0.970725  0.033099  1.553420
2013-01-03 -0.544326  0.545738 -1.325810  0.130738
2013-01-04  1.044803 -0.117151  0.874583  2.278227
2013-01-05 -2.194728 -2.536257  0.478644  0.057728
2013-01-06 -1.092031  1.249952  1.598761 -0.153423

In [98]: df2 = df.copy()
    ...: df2['E'] = ['one', 'one','two','three','four','three']
    ...: df2
    ...:
Out[98]:
                   A         B         C         D      E
2013-01-01 -0.411674  0.273549  0.629843  1.881497    one
2013-01-02  1.240512  0.970725  0.033099  1.553420    one
2013-01-03 -0.544326  0.545738 -1.325810  0.130738    two
2013-01-04  1.044803 -0.117151  0.874583  2.278227  three
2013-01-05 -2.194728 -2.536257  0.478644  0.057728   four
2013-01-06 -1.092031  1.249952  1.598761 -0.153423  three

增删行列

增加新列column

In [110]: df2["F"] = np.arange(3,9)   # 如果赋的是一个值比如3,那这一列都是3。

In [111]: df2
Out[111]:
                   A         B         C         D      E  F
2013-01-01 -0.411674  0.273549  0.629843  1.881497    ONE  3
2013-01-02  1.240512  0.970725  0.033099  1.553420    ONE  4
2013-01-03 -0.544326  0.545738 -1.325810  0.130738    TWO  5
2013-01-04  1.044803 -0.117151  0.874583  2.278227  THREE  6
2013-01-05 -2.194728 -2.536257  0.478644  0.057728   FOUR  7
2013-01-06 -1.092031  1.249952  1.598761 -0.153423  THREE  8

改变列名

In [112]: df2.columns = list("qwerty")

In [113]: df2.columns
Out[113]: Index(['q', 'w', 'e', 'r', 't', 'y'], dtype='object')

设置index

pd.DataFrame.set_index(keys,drop=False, inplace=False) 
# keys : column label or list of column labels / arrays
# 默认drop=True,设置为index的列从数据库删除。

修改数值

用lambda和apply更改数据值

In [101]: df2.loc[:,"E"].unique()
Out[101]: array(['one', 'two', 'three', 'four'], dtype=object)

In [105]: df2.loc[:,"E"]=df2.E.apply(lambda x: x.upper())

In [106]: df2.loc[:,"E"].unique()
Out[106]: array(['ONE', 'TWO', 'THREE', 'FOUR'], dtype=object)

函数应用 function application

三种情况:

  1. 整张表:pipe()
  2. 行列应用:apply()
  3. 元素级应用: applymap()

这一部分在【function application部分】:http://pandas.pydata.org/pandas-docs/stable/basics.html#basics-discretization

apply()的使用

In [34]: df.apply(np.mean)
Out[34]:
A   -0.274648
B   -0.260124
C    0.152004
D   -0.659868
dtype: float64

In [35]: df.apply(lambda x: x.max() - x.min())  # 求了个全距
Out[35]:
A    3.203982
B    4.084655
C    1.984507
D    3.190727
dtype: float64

合并重叠数据

#1
a = Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
           index=['f', 'e', 'd', 'c', 'b', 'a'])
b = Series(np.arange(len(a), dtype=np.float64),
           index=['f', 'e', 'd', 'c', 'b', 'a'])
b[-1] = np.nan


np.where(pd.isnull(a), b, a)

#2  补齐数据
b[:-2].combine_first(a[2:])

#3 
df1 = DataFrame({'a': [1., np.nan, 5., np.nan],
                 'b': [np.nan, 2., np.nan, 6.],
                 'c': range(2, 18, 4)})
df2 = DataFrame({'a': [5., 4., np.nan, 3., 7.],
                 'b': [np.nan, 3., 4., 6., 8.]})
df1.combine_first(df2)  
# 把df1中缺失的数据NaN,补充为df2中对应的数据。


缺失值处理

df1.dropna(how='any')       # 删除空数据,按行。
df1.fillna(value=5)         # 填充空数据,9999。
pd.isnull(df1)              # 获得df1数据库的nan布尔面具。
DataFrame.fillna(value=None,    # scalar, dict, Series, or DataFrame. 【不能是list】
                                # dict Series等没有的值就没法填充。
                method=None,    # {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
                                # backfill/bfill,用后面的第一个值,ffill用前面的最有一个值。
                axis=None,      # {0 or ‘index’, 1 or ‘columns’}
                inplace=False,  # 布尔型,True或False。默认False。
                limit=None, 
                downcast=None, 
                **kwargs)

limit : int, default None
    If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled.
downcast : dict, default is None
    a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
Returns:    
    filled : DataFrame
  • 1.96个标准差以外的
  • 分组后,组内1.96个标准差以外的
  • 多重分组后。。。
#---创建了两个数据表,然后合在一起---
In [116]: States = ['NY', 'NY', 'NY', 'NY', 'FL', 'FL', 'GA', 'GA', 'FL', 'FL']
     ...: data = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10]
     ...: idx = pd.date_range('1/1/2012', periods=10, freq='MS')
     ...: df1 = pd.DataFrame(data, index=idx, columns=['Revenue'])
     ...: df1['State'] = States
     ...:

In [118]: data2 = [10.0, 10.0, 9, 9, 8, 8, 7, 7, 6, 6]
     ...: idx2 = pd.date_range('1/1/2013', periods=10, freq='MS')
     ...: df2 = pd.DataFrame(data2, index=idx2, columns=['Revenue'])
     ...: df2['State'] = States
     ...:

In [119]: df = pd.concat([df1,df2])

In [120]: df
Out[120]:
            Revenue State
2012-01-01      1.0    NY
2012-02-01      2.0    NY
2012-03-01      3.0    NY
2012-04-01      4.0    NY
2012-05-01      5.0    FL
2012-06-01      6.0    FL
2012-07-01      7.0    GA
2012-08-01      8.0    GA
2012-09-01      9.0    FL
2012-10-01     10.0    FL
2013-01-01     10.0    NY
2013-02-01     10.0    NY
2013-03-01      9.0    NY
2013-04-01      9.0    NY
2013-05-01      8.0    FL
2013-06-01      8.0    FL
2013-07-01      7.0    GA
2013-08-01      7.0    GA
2013-09-01      6.0    FL
2013-10-01      6.0    FL

方法1:超总体均值1.96个std

In [121]: newdf = df.copy()
     ...:
     ...: newdf['x-Mean'] = abs(newdf['Revenue'] - newdf['Revenue'].mean())
     ...: newdf['1.96*std'] = 1.96*newdf['Revenue'].std()
     ...: newdf['Outlier'] = abs(newdf['Revenue'] - newdf['Revenue'].mean()) > 1.96*newdf['Revenue'].std()
     ...: newdf
     ...:
Out[121]:
            Revenue State  x-Mean  1.96*std Outlier
2012-01-01      1.0    NY    5.75  5.200273    True
2012-02-01      2.0    NY    4.75  5.200273   False
2012-03-01      3.0    NY    3.75  5.200273   False
2012-04-01      4.0    NY    2.75  5.200273   False
2012-05-01      5.0    FL    1.75  5.200273   False
2012-06-01      6.0    FL    0.75  5.200273   False
2012-07-01      7.0    GA    0.25  5.200273   False
2012-08-01      8.0    GA    1.25  5.200273   False
2012-09-01      9.0    FL    2.25  5.200273   False
2012-10-01     10.0    FL    3.25  5.200273   False
2013-01-01     10.0    NY    3.25  5.200273   False
2013-02-01     10.0    NY    3.25  5.200273   False
2013-03-01      9.0    NY    2.25  5.200273   False
2013-04-01      9.0    NY    2.25  5.200273   False
2013-05-01      8.0    FL    1.25  5.200273   False
2013-06-01      8.0    FL    1.25  5.200273   False
2013-07-01      7.0    GA    0.25  5.200273   False
2013-08-01      7.0    GA    0.25  5.200273   False
2013-09-01      6.0    FL    0.75  5.200273   False
2013-10-01      6.0    FL    0.75  5.200273   False

方法2:分组后超小组1.96个std

In [122]: newdf = df.copy()
     ...:
     ...: State = newdf.groupby('State')   # 分类汇总的方法。groupby.transform
     ...:
     ...: newdf['Outlier'] = State.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )
     ...: newdf['x-Mean'] = State.transform( lambda x: abs(x-x.mean()) )
     ...: newdf['1.96*std'] = State.transform( lambda x: 1.96*x.std() )
     ...: newdf
     ...:
Out[122]:
            Revenue State Outlier  x-Mean  1.96*std
2012-01-01      1.0    NY   False    5.00  7.554813
2012-02-01      2.0    NY   False    4.00  7.554813
2012-03-01      3.0    NY   False    3.00  7.554813
2012-04-01      4.0    NY   False    2.00  7.554813
2012-05-01      5.0    FL   False    2.25  3.434996
2012-06-01      6.0    FL   False    1.25  3.434996
2012-07-01      7.0    GA   False    0.25  0.980000
2012-08-01      8.0    GA   False    0.75  0.980000
2012-09-01      9.0    FL   False    1.75  3.434996
2012-10-01     10.0    FL   False    2.75  3.434996
2013-01-01     10.0    NY   False    4.00  7.554813
2013-02-01     10.0    NY   False    4.00  7.554813
2013-03-01      9.0    NY   False    3.00  7.554813
2013-04-01      9.0    NY   False    3.00  7.554813
2013-05-01      8.0    FL   False    0.75  3.434996
2013-06-01      8.0    FL   False    0.75  3.434996
2013-07-01      7.0    GA   False    0.25  0.980000
2013-08-01      7.0    GA   False    0.25  0.980000
2013-09-01      6.0    FL   False    1.25  3.434996
2013-10-01      6.0    FL   False    1.25  3.434996

#---函数式的写法---
newdf = df.copy()

State = newdf.groupby('State')

def s(group):
    group['x-Mean'] = abs(group['Revenue'] - group['Revenue'].mean())
    group['1.96*std'] = 1.96*group['Revenue'].std()  
    group['Outlier'] = abs(group['Revenue'] - group['Revenue'].mean()) > 1.96*group['Revenue'].std()
    return group

Newdf2 = State.apply(s)
Newdf2

方法3:多重分组之后,1.96

In [123]: newdf = df.copy()
     ...:
     ...: StateMonth = newdf.groupby(['State', lambda x: x.month])
     ...:
     ...: newdf['Outlier'] = StateMonth.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )
     ...: newdf['x-Mean'] = StateMonth.transform( lambda x: abs(x-x.mean()) )
     ...: newdf['1.96*std'] = StateMonth.transform( lambda x: 1.96*x.std() )
     ...: newdf
     ...:
Out[123]:
            Revenue State Outlier  x-Mean   1.96*std
2012-01-01      1.0    NY   False     4.5  12.473364
2012-02-01      2.0    NY   False     4.0  11.087434
2012-03-01      3.0    NY   False     3.0   8.315576
2012-04-01      4.0    NY   False     2.5   6.929646
2012-05-01      5.0    FL   False     1.5   4.157788
2012-06-01      6.0    FL   False     1.0   2.771859
2012-07-01      7.0    GA   False     0.0   0.000000
2012-08-01      8.0    GA   False     0.5   1.385929
2012-09-01      9.0    FL   False     1.5   4.157788
2012-10-01     10.0    FL   False     2.0   5.543717
2013-01-01     10.0    NY   False     4.5  12.473364
2013-02-01     10.0    NY   False     4.0  11.087434
2013-03-01      9.0    NY   False     3.0   8.315576
2013-04-01      9.0    NY   False     2.5   6.929646
2013-05-01      8.0    FL   False     1.5   4.157788
2013-06-01      8.0    FL   False     1.0   2.771859
2013-07-01      7.0    GA   False     0.0   0.000000
2013-08-01      7.0    GA   False     0.5   1.385929
2013-09-01      6.0    FL   False     1.5   4.157788
2013-10-01      6.0    FL   False     2.0   5.543717

In [124]: StateMonth
Out[124]: <pandas.core.groupby.DataFrameGroupBy object at 0x0000017F52F4DAC8>

方法4:四分位数。对于非高斯分布/正态分布的数据。

# make a copy of original df
In [126]: newdf = df.copy()
     ...:
     ...: State = newdf.groupby('State')
     ...:
     ...: newdf['Lower'] = State['Revenue'].transform( lambda x: x.quantile(q=.25) - (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
     ...: newdf['Upper'] = State['Revenue'].transform( lambda x: x.quantile(q=.75) + (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
     ...: newdf['Outlier'] = (newdf['Revenue'] < newdf['Lower']) | (newdf['Revenue'] > newdf['Upper'])
     ...: newdf
     ...:
Out[126]:
            Revenue State  Lower   Upper Outlier
2012-01-01      1.0    NY -7.000  19.000   False
2012-02-01      2.0    NY -7.000  19.000   False
2012-03-01      3.0    NY -7.000  19.000   False
2012-04-01      4.0    NY -7.000  19.000   False
2012-05-01      5.0    FL  2.625  11.625   False
2012-06-01      6.0    FL  2.625  11.625   False
2012-07-01      7.0    GA  6.625   7.625   False
2012-08-01      8.0    GA  6.625   7.625    True
2012-09-01      9.0    FL  2.625  11.625   False
2012-10-01     10.0    FL  2.625  11.625   False
2013-01-01     10.0    NY -7.000  19.000   False
2013-02-01     10.0    NY -7.000  19.000   False
2013-03-01      9.0    NY -7.000  19.000   False
2013-04-01      9.0    NY -7.000  19.000   False
2013-05-01      8.0    FL  2.625  11.625   False
2013-06-01      8.0    FL  2.625  11.625   False
2013-07-01      7.0    GA  6.625   7.625   False
2013-08-01      7.0    GA  6.625   7.625   False
2013-09-01      6.0    FL  2.625  11.625   False
2013-10-01      6.0    FL  2.625  11.625   False

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容