02. Spark Streaming实时流处理学习——分布式日志收集框架Flume

2. 分布式日志收集框架Flume

image.png

2.1 业务现状分析

image.png

如上图,大量的系统和各种服务的日志数据持续生成。用户有了很好的商业创意想要充分利用这些系统日志信息。比如用户行为分析,轨迹跟踪等等。
如何将日志上传到Hadoop集群上?
对比方案存在什么问题,以及有什么优势?

  • 方案1: 容错,负载均衡,高延时等问题如何消除?
  • 方案2: Flume框架

2.2 Flume概述

flume官网 http://flume.apache.org
Flume is a distributed, reliable, and available service for efficiently collecting(收集), aggregating(聚合), and moving(移动)large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.

Flume是有Cloudera提供的一个分布式、高可靠、高可用的服务,用于分布式的海量日志的高效收集、聚合、移动的系统
Flume的设计目标

  • 可靠性
  • 扩展性
  • 管理性(agent有效的管理者)

业界同类产品对比

  • Flume(***): Cloudera/Apache Java
  • Scribe: Facebook C/C++ 不再维护
  • Chukwa:Yahoo/Apache Java 不再维护
  • Fluentd:Ruby
  • Logstash(***):ELK(ElasticSearch,Kibana)

Flume发展史

  • Cloudera 0.9.2 Flume-OG
  • flume-728 Flume-NG => Apache
  • 2012.7 1.0
  • 2015.5 1.6 (*** +)
  • ~ 1.8

2.3 Flume架构及核心组件

image.png
  1. Source(收集)
  2. Channel(聚合)
  3. Sink(输出)

multi-agent flow

image.png

In order to flow the data across multiple agents or hops, the sink of the previous agent and source of the current hop need to be avro type with the sink pointing to the hostname (or IP address) and port of the source.
A very common scenario in log collection is a large number of log producing clients sending data to a few consumer agents that are attached to the storage subsystem. For example, logs collected from hundreds of web servers sent to a dozen of agents that write to HDFS cluster.

image.png

This can be achieved in Flume by configuring a number of first tier agents with an avro sink, all pointing to an avro source of single agent (Again you could use the thrift sources/sinks/clients in such a scenario). This source on the second tier agent consolidates the received events into a single channel which is consumed by a sink to its final destination.

Multiplexing the flow

Flume supports multiplexing the event flow to one or more destinations. This is achieved by defining a flow multiplexer that can replicate or selectively route an event to one or more channels.


image.png

The above example shows a source from agent “foo” fanning out the flow to three different channels. This fan out can be replicating or multiplexing. In case of replicating flow, each event is sent to all three channels. For the multiplexing case, an event is delivered to a subset of available channels when an event’s attribute matches a preconfigured value. For example, if an event attribute called “txnType” is set to “customer”, then it should go to channel1 and channel3, if it’s “vendor” then it should go to channel2, otherwise channel3. The mapping can be set in the agent’s configuration file.

2.4 Flume环境部署

前置条件

  • Java Runtime Environment - Java 1.8 or later
  • Memory - Sufficient memory for configurations used by sources, channels or sinks
  • Disk Space - Sufficient disk space for configurations used by channels or sinks
  • Directory Permissions - Read/Write permissions for directories used by agent

安装JDK

  • 下载JDK包
  • 解压JDK包
tar -zxvf jdk-8u162-linux-x64.tar.gz  [install dir]
* 配置JAVA环境变量:
修改系统配置文件 /etc/profile  或者  ~/.bash_profile
export JAVA_HOME=[jdk install dir]
export PATH = $JAVA_HOME/bin:$PATH
执行指令 
source /etc/profile  或者 
source ~/.bash_profile 
使得配置生效。
执行指令 
java -version 
检测环境配置是否生效。

安装Flume

  • 下载Flume包
wget http://www.apache.org/dist/flume/1.7.0/apache-flume-1.7.0-bin.tar.gz
  • 解压Flume包
tar -zxvf apache-flume-1.7.0-bin.tar.gz -C [install dir]
  • 配置Flume环境变量
vim /etc/profile  或者
vim ~/.bash_profile
export FLUME_HOME=[flume install dir]
export PATH = $FLUME_HOME/bin:$PATH
执行指令 
source /etc/profile  或者 
source ~/.bash_profile 
使得配置生效。
  • 修改flume-env.sh脚本文件
export JAVA_HOME=[jdk install dir]
执行指令
flume-ng version
检测安装情况

2.5 Flume实战

  • 需求1:从指定的网络端口采集数据输出到控制台

使用Flume的关键就是写配置文件

  1. 配置source
  2. 配置Channel
  3. 配置Sink
  4. 把以上三个组件链接起来

a1: agent名称
r1: source的名称
k1: sink的名称
c1: channel的名称

单一节点 Flume 配置

# example.conf: A single-node Flume configuration

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动Flume agent

flume-ng agent \
--name a1 \
--conf  $FLUME_HOME/conf    \
--conf-file  $FLUME_HOME/conf/example.conf \
-Dflume.root.logger=INFO,console

使用telnet或者nc进行测试

telnet [hostname]  [port]     或者
nc [hostname]  [port]

Event = 可选的headers + byte array

Event: { headers:{} body: 74 68 69 73 20 69 73 20 61 20 74 65 73 74 20 70 this is a test p }
  • 需求2:监控一个文件实时采集新增的数据输出到控制台
    技术(Agent)选型:exec source + memory channel + logger sink
# example.conf: A single-node Flume configuration

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -f  /root/data/data.log
a1.sources.r1.shell = /bin/bash -c

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动Flume agent

flume-ng agent \
--name a1 \
--conf  $FLUME_HOME/conf    \
--conf-file  $FLUME_HOME/conf/example.conf \
-Dflume.root.logger=INFO,console

修改data.log文件,监测是否数据是否输出到控制台

echo hello >> data.log
echo world >> data.log
echo welcome >> data.log

控制台输出

2018-09-02 03:55:00,672 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 68 65 6C 6C 6F                                  hello }
2018-09-02 03:55:06,748 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 77 6F 72 6C 64                                  world }
2018-09-02 03:55:22,280 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 77 65 6C 63 6F 6D 65                            welcome }

至此,需求2成功实现。

  • 需求3(***):将A服务器上的日志实时采集到B服务器上(重点掌握)
    技术(Agent)选型:
    exec source + memory channel + avro sink
    avro source + memory channel + logger sink
    image.png
# exec-memory-avro.conf: A single-node Flume configuration

# Name the components on this agent
exec-memory-avro.sources = exec-source
exec-memory-avro.sinks = avro-sink
exec-memory-avro.channels = memory-channel

# Describe/configure the source
exec-memory-avro.sources.exec-source.type = exec
exec-memory-avro.sources.exec-source.command = tail -f  /root/data/data.log
exec-memory-avro.sources.exec-source.shell = /bin/bash -c

# Describe the sink
exec-memory-avro.sinks.avro-sink.type = avro
exec-memory-avro.sinks.avro-sink.hostname = c7-master
exec-memory-avro.sinks.avro-sink.port = 44444

# Use a channel which buffers events in memory
exec-memory-avro.channels.memory-channel.type = memory
exec-memory-avro.channels.memory-channel.capacity = 1000
exec-memory-avro.channels.memory-channel.transactionCapacity = 100

# Bind the source and sink to the channel
exec-memory-avro.sources.exec-source.channels = memory-channel
exec-memory-avro.sinks.avro-sink.channel = memory-channel
# avro-memory-logger.conf: A single-node Flume configuration

# Name the components on this agent
avro-memory-logger.sources = avro-source
avro-memory-logger.sinks = logger-sink
avro-memory-logger.channels = memory-channel

# Describe/configure the source
avro-memory-logger.sources.avro-source.type = avro
avro-memory-logger.sources.avro-source.bind = c7-master
avro-memory-logger.sources.avro-source.port = 44444

# Describe the sink
avro-memory-logger.sinks.logger-sink.type = logger

# Use a channel which buffers events in memory
avro-memory-logger.channels.memory-channel.type = memory
avro-memory-logger.channels.memory-channel.capacity = 1000
avro-memory-logger.channels.memory-channel.transactionCapacity = 100

# Bind the source and sink to the channel
avro-memory-logger.sources.avro-source.channels = memory-channel
avro-memory-logger.sinks.logger-sink.channel = memory-channel

优先启动 avro-memory-logger agent

flume-ng agent \
--name avro-memory-logger \
--conf  $FLUME_HOME/conf    \
--conf-file  $FLUME_HOME/conf/avro-memory-logger.conf \
-Dflume.root.logger=INFO,console

再启动 exec-memory-avro agent

flume-ng agent \
--name exec-memory-avro  \
--conf  $FLUME_HOME/conf    \
--conf-file  $FLUME_HOME/conf/exec-memory-avro.conf \
-Dflume.root.logger=INFO,console

日志收集过程:
1)机器A上监控一个文件,当我们访问主站时会有用户行为日志记录到access.log中
2)avro sink把新产生的日志输出到对应的avro source指定的hostname:port主机上。
3)通过avro source对应的agent将我们的日志输出到控制台。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容