算法基础(二) —— 空间复杂度研究(一)

版本记录

版本号 时间
V1.0 2018.09.14

前言

关于算法学习有很多很基础的概念和理论,我们不需要强行记忆但是一定要理解明白和说的出来,这个专题就是专门进行有关算法基本内容的一些解析。感兴趣的可以看下面几篇。
1. 算法基础(一) —— 时间复杂度研究(一)

空间复杂度

首先我们看一下空间复杂度的概念。

官方解释:空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。比如直接插入排序时间复杂度O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。

算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)= O(f(n)),其中,n为问题的规模, f(n)为语句关于 n 所占存储空间的函数。

一般情况下, 一个程序在机器上执行时,除了需要存储程序本身的指令、常数、变量和输入数据外,还需要存储对数据操作的存储单元,若输入数据所占空间只取决于问题本身,和算法无关,这样只需要分析该算法在实现时所需的辅助单元即可。若算法执行时所需的辅助空间相对于输入数据量而言是个常数,则称此算法为原地工作,空间复杂度为O(1)


计算方法

  • 忽略常数,用O(1)表示。
  • 递归算法的空间复杂度=递归深度N*每次递归所要的辅助空间。
  • 对于单线程来说,递归有运行时堆栈,求的是递归最深的那一次压栈所耗费的空间的个数,因为递归最深的那一次所耗费的空间足以容纳它所有递归过程。

下面看一下各种排序算法的时间复杂度和空间复杂度。


计算示例

下面我们就看一下空间复杂度的计算示例。

1. O(1)

int a;
int b;
printf("%d %d\n",a,b);

这个的空间复杂度就是O(n)= O(1),因为这个空间复杂度的是一个常数。

2. O(n)

int fun(int n)
{
    int k = 10;
    
    if(n == k){
        return n;
    }
    else{
        return fun(++n);
    }
}

递归实现,调用fun函数,每次都创建1个变量k。调用n次,空间复杂度为O(n)

3. 斐波那契数列

递归

int fib1(int n)
{
    while (n < 2)
        return n;
    while (n >= 2)
        return fib1(n - 1) + fib1(n - 2);
}

空间复杂度为O(1)。

要想求解F(n),必须先计算F(n-1)和F(n-2),计算F(n-1)和F(n-2),又必须先计算F(n-3)和F(n-4).....以此类推,直至必须先计算F(1)和F(0),然后逆推得到F(n-1)和F(n-2)的结果,从而得到F(n)要计算很多重复的值,在时间上造成了很大的浪费,算法的时间复杂度随着N的增大呈现指数增长,时间的复杂度为O(2^n),即2的n次方。

递归时间复杂度
递归空间复杂度

整个程序执行过程中,最多占用4个函数栈帧空间的大小,设一个函数栈帧空间为C。因此可得知当n=5时,该程序空间复杂度为O(4C)=>O(1)当求第n个斐波那契数时,程序空间复杂度为O(n-1)C (n是常数)=>O(1)。

非递归

long long fib2(int n)
{
    int i = 0, f1 = 1, f2 = 1, f3 = 0;
    if (n < 2)
        return n;
    if (n >= 2)
    for (long long i = 2; i <= n; i++)
    {
        f3 = f1 + f2;
        f1 = f2;
        f2 = f3;
    }
    return f3;
}

空间复杂度为O(n)。

从n(>2)开始计算,用F(n-1)和F(n-2)两个数相加求出结果,这样就避免了大量的重复计算,它的效率比递归算法快得多,算法的时间复杂度与n成正比,即算法的时间复杂度为O(n)

非递归空间复杂度

尾递归的方法,需开辟n-2个空间,空间复杂度为O(n-2)O(n)

参考文章

1. 以斐波那契数列为例分析递归算法的时间复杂度和空间复杂度
2. 斐波那契数的时间复杂度、空间复杂度详解

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容