Python Basics With Numpy v2

Python Basics with Numpy (optional assignment)

Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you've used Python before, this will help familiarize you with functions we'll need.

Instructions:

  • You will be using Python 3.(使用python3)
  • Avoid using for-loops and while-loops, unless you are explicitly told to do so.(避免使用for循环和while循环,除非你被明显的告知要这样做)
  • Do not modify the (# GRADED FUNCTION [function name]) comment in some cells. Your work would not be graded if you change this. Each cell containing that comment should only contain one function.
  • After coding your function, run the cell right below it to check if your result is correct.

After this assignment you will:

  • Be able to use iPython Notebooks(会使用iPython Notebook)
  • Be able to use numpy functions and numpy matrix/vector operations(会使用numpy函数和numpy矩阵/向量操作)
  • Understand the concept of "broadcasting"(理解广播的概念)
  • Be able to vectorize code(能将代码向量化)

Let's get started!

About iPython Notebooks

iPython Notebooks are interactive coding environments embedded in a webpage. You will be using iPython notebooks in this class. You only need to write code between the ### START CODE HERE ### and ### END CODE HERE ### comments. After writing your code, you can run the cell by either pressing "SHIFT"+"ENTER" or by clicking on "Run Cell" (denoted by a play symbol) in the upper bar of the notebook.

We will often specify "(≈ X lines of code)" in the comments to tell you about how much code you need to write. It is just a rough estimate, so don't feel bad if your code is longer or shorter.

Exercise: Set test to "Hello World" in the cell below to print "Hello World" and run the two cells below.

### START CODE HERE ### (≈ 1 line of code)
test = None
test = "Hello World"
### END CODE HERE ###
print ("test: " + test)
test: Hello World

Expected output:
test: Hello World

<font color='blue'>
What you need to remember:

  • Run your cells using SHIFT+ENTER (or "Run cell")
  • Write code in the designated areas using Python 3 only
  • Do not modify the code outside of the designated areas

1 - Building basic functions with numpy

Numpy is the main package for scientific computing in Python. It is maintained by a large community (www.numpy.org). In this exercise you will learn several key numpy functions such as np.exp, np.log, and np.reshape. You will need to know how to use these functions for future assignments.

(Numpy是Python中科学计算的主要软件包。它由一个大型社区维护( www.numpy.org)。在本练习中,你将学习np.exp,np.log和np.reshape等几个重要的numpy函数。您将需要知道如何使用这些功能进行未来分配。)

1.1 - sigmoid function, np.exp()

Before using np.exp(), you will use math.exp() to implement the sigmoid function. You will then see why np.exp() is preferable(最好的) to math.exp().

(在使用np.exp()之前,使用math.exp()来实现sigmoid函数)

Exercise: Build a function that returns the sigmoid of a real number x. Use math.exp(x) for the exponential function.

Reminder:
$sigmoid(x) = \frac{1}{1+e^{-x}}$ is sometimes also known as the logistic function. It is a non-linear function used not only in Machine Learning (Logistic Regression), but also in Deep Learning.

Sigmoid.png

To refer to a function belonging to a specific package you could call it using package_name.function(). Run the code below to see an example with math.exp().

# GRADED FUNCTION: basic_sigmoid

import math

def basic_sigmoid(x):
    """
    Compute sigmoid of x.

    Arguments:
    x -- A scalar

    Return:
    s -- sigmoid(x)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    s = None
    s = 1/(1+math.exp(-x))
    ### END CODE HERE ###
    
    return s
basic_sigmoid(3)
0.9525741268224334

Expected Output:
<table style = "width:40%">
<tr>
<td>** basic_sigmoid(3) **</td>
<td>0.9525741268224334 </td>
</tr>

</table>

Actually, we rarely use the "math" library in deep learning because the inputs of the functions are real numbers. In deep learning we mostly use matrices and vectors. This is why numpy is more useful.

### One reason why we use "numpy" instead of "math" in Deep Learning ###
x = [1, 2, 3]
basic_sigmoid(x) # you will see this give an error when you run it, because x is a vector.
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-30-8ccefa5bf989> in <module>()
      1 ### One reason why we use "numpy" instead of "math" in Deep Learning ###
      2 x = [1, 2, 3]
----> 3 basic_sigmoid(x) # you will see this give an error when you run it, because x is a vector.


<ipython-input-28-79a4b0118f51> in basic_sigmoid(x)
     16     ### START CODE HERE ### (≈ 1 line of code)
     17     s = None
---> 18     s = 1/(1+math.exp(-x))
     19     ### END CODE HERE ###
     20 


TypeError: bad operand type for unary -: 'list'

In fact, if $ x = (x_1, x_2, ..., x_n)$ is a row vector then $np.exp(x)$ will apply the exponential function to every element of x. The output will thus be: $np.exp(x) = (e^{x_1}, e^{x_2}, ..., e^{x_n})$

import numpy as np

# example of np.exp
x = np.array([1, 2, 3])
print(np.exp(x)) # result is (exp(1), exp(2), exp(3))
[  2.71828183   7.3890561   20.08553692]

Furthermore, if x is a vector, then a Python operation such as $s = x + 3$ or $s = \frac{1}{x}$ will output s as a vector of the same size as x.

# example of vector operation
x = np.array([1, 2, 3])
print (x + 3)
[4 5 6]

Any time you need more info on a numpy function, we encourage you to look at the official documentation.

You can also create a new cell in the notebook and write np.exp? (for example) to get quick access to the documentation.

Exercise: Implement the sigmoid function using numpy.

Instructions: x could now be either a real number, a vector, or a matrix. The data structures we use in numpy to represent these shapes (vectors, matrices...) are called numpy arrays. You don't need to know more for now.
$$ \text{For } x \in \mathbb{R}^n \text{, } sigmoid(x) = sigmoid\begin{pmatrix}
x_1 \
x_2 \
... \
x_n \
\end{pmatrix} = \begin{pmatrix}
\frac{1}{1+e^{-x_1}} \
\frac{1}{1+e^{-x_2}} \
... \
\frac{1}{1+e^{-x_n}} \
\end{pmatrix}\tag{1} $$

# GRADED FUNCTION: sigmoid

import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()

def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size

    Return:
    s -- sigmoid(x)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    s = None
    s = 1/(1 + np.exp(-x))
    ### END CODE HERE ###
    
    return s
x = np.array([1, 2, 3])
sigmoid(x)
array([ 0.73105858,  0.88079708,  0.95257413])

Expected Output:
<table>
<tr>
<td> sigmoid([1,2,3])</td>
<td> array([ 0.73105858, 0.88079708, 0.95257413]) </td>
</tr>
</table>

1.2 - Sigmoid gradient

As you've seen in lecture, you will need to compute gradients to optimize loss functions using backpropagation. Let's code your first gradient function.

(正如您在课堂上所看到的,您将需要计算梯度以使用反向传播优化损失函数)

Exercise: Implement the function sigmoid_grad() to compute the gradient of the sigmoid function with respect to its input x. The formula is: $$sigmoid_derivative(x) = \sigma'(x) = \sigma(x) (1 - \sigma(x))\tag{2}$$
You often code this function in two steps:

  1. Set s to be the sigmoid of x. You might find your sigmoid(x) function useful.
  2. Compute $\sigma'(x) = s(1-s)$
# GRADED FUNCTION: sigmoid_derivative

def sigmoid_derivative(x):
    """
    Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.
    You can store the output of the sigmoid function into variables and then use it to calculate the gradient.
    
    Arguments:
    x -- A scalar or numpy array

    Return:
    ds -- Your computed gradient.
    """
    
    ### START CODE HERE ### (≈ 2 lines of code)
    s = None
    ds = None
    s = sigmoid(x)
    ds = s*(1-s)
    ### END CODE HERE ###
    
    return ds
x = np.array([1, 2, 3])
print ("sigmoid_derivative(x) = " + str(sigmoid_derivative(x)))
sigmoid_derivative(x) = [ 0.19661193  0.10499359  0.04517666]

Expected Output:

<table>
<tr>
<td> sigmoid_derivative([1,2,3])</td>
<td> [ 0.19661193 0.10499359 0.04517666] </td>
</tr>
</table>

1.3 - Reshaping arrays

Two common numpy functions used in deep learning are np.shape and np.reshape().

  • X.shape is used to get the shape (dimension) of a matrix/vector X. (X.shape用来获取矩阵或者向量的维度)
  • X.reshape(...) is used to reshape X into some other dimension. (X.reshape用来改变成其他的维度)

For example, in computer science, an image is represented by a 3D array of shape $(length, height, depth = 3)$. However, when you read an image as the input of an algorithm you convert it to a vector of shape $(lengthheight3, 1)$. In other words, you "unroll", or reshape, the 3D array into a 1D vector.

(例如,在计算机科学中,图像由形状$(长度,高度,深度= 3)$的三维数组表示。但是,当读取图像作为算法的输入时,将其转换为形状为$(length * height * 3,1)$的矢量。换句话说,您将3D数组“展开”或重新塑造成一维矢量。)

image2vector_kiank.png

Exercise: Implement image2vector() that takes an input of shape (length, height, 3) and returns a vector of shape (length*height*3, 1). For example, if you would like to reshape an array v of shape (a, b, c) into a vector of shape (a*b,c) you would do:

v = v.reshape((v.shape[0]*v.shape[1], v.shape[2])) # v.shape[0] = a ; v.shape[1] = b ; v.shape[2] = c
  • Please don't hardcode the dimensions of image as a constant. Instead look up the quantities you need with image.shape[0], etc.
# GRADED FUNCTION: image2vector
def image2vector(image):
    """
    Argument:
    image -- a numpy array of shape (length, height, depth)
    
    Returns:
    v -- a vector of shape (length*height*depth, 1)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    v = None
    v = image.reshape(image.shape[0]*image.shape[1]*image.shape[2],1)
    ### END CODE HERE ###
    
    return v
# This is a 3 by 3 by 2 array, typically images will be (num_px_x, num_px_y,3) where 3 represents the RGB values
image = np.array([[[ 0.67826139,  0.29380381],
        [ 0.90714982,  0.52835647],
        [ 0.4215251 ,  0.45017551]],

       [[ 0.92814219,  0.96677647],
        [ 0.85304703,  0.52351845],
        [ 0.19981397,  0.27417313]],

       [[ 0.60659855,  0.00533165],
        [ 0.10820313,  0.49978937],
        [ 0.34144279,  0.94630077]]])

print ("image2vector(image) = " + str(image2vector(image)))
image2vector(image) = [[ 0.67826139]
 [ 0.29380381]
 [ 0.90714982]
 [ 0.52835647]
 [ 0.4215251 ]
 [ 0.45017551]
 [ 0.92814219]
 [ 0.96677647]
 [ 0.85304703]
 [ 0.52351845]
 [ 0.19981397]
 [ 0.27417313]
 [ 0.60659855]
 [ 0.00533165]
 [ 0.10820313]
 [ 0.49978937]
 [ 0.34144279]
 [ 0.94630077]]

Expected Output:

<table style="width:100%">
<tr>
<td> image2vector(image) </td>
<td> [[ 0.67826139]
[ 0.29380381]
[ 0.90714982]
[ 0.52835647]
[ 0.4215251 ]
[ 0.45017551]
[ 0.92814219]
[ 0.96677647]
[ 0.85304703]
[ 0.52351845]
[ 0.19981397]
[ 0.27417313]
[ 0.60659855]
[ 0.00533165]
[ 0.10820313]
[ 0.49978937]
[ 0.34144279]
[ 0.94630077]]</td>
</tr>

</table>

1.4 - Normalizing rows(正则化行)

Another common technique we use in Machine Learning and Deep Learning is to normalize our data. It often leads to a better performance because gradient descent converges faster after normalization. Here, by normalization we mean changing x to $ \frac{x}{| x|} $ (dividing each row vector of x by its norm).

(我们在机器学习和深度学习中使用的另一个常用技术是规范化我们的数据。它经常导致更好的性能,因为梯度下降在归一化之后收敛得更快。这里,通过标准化我们的意思是将x改为$ \frac{x}{| x|} $(将x的每一行向量除以它的范数)。)

For example, if $$x =
\begin{bmatrix}
0 & 3 & 4 \
2 & 6 & 4 \
\end{bmatrix}\tag{3}$$ then $$| x| = np.linalg.norm(x, axis = 1, keepdims = True) = \begin{bmatrix}
5 \
\sqrt{56} \
\end{bmatrix}\tag{4} $$and $$ x_normalized = \frac{x}{| x|} = \begin{bmatrix}
0 & \frac{3}{5} & \frac{4}{5} \
\frac{2}{\sqrt{56}} & \frac{6}{\sqrt{56}} & \frac{4}{\sqrt{56}} \
\end{bmatrix}\tag{5}$$ Note that you can divide matrices of different sizes and it works fine: this is called broadcasting and you're going to learn about it in part 5.

Exercise: Implement normalizeRows() to normalize the rows of a matrix. After applying this function to an input matrix x, each row of x should be a vector of unit length (meaning length 1).

# GRADED FUNCTION: normalizeRows

def normalizeRows(x):
    """
    Implement a function that normalizes each row of the matrix x (to have unit length).
    
    Argument:
    x -- A numpy matrix of shape (n, m)
    
    Returns:
    x -- The normalized (by row) numpy matrix. You are allowed to modify x.
    """
    
    ### START CODE HERE ### (≈ 2 lines of code)
    # Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., keepdims = True)
    x_norm = None
    x_norm = np.linalg.norm(x,ord = 2,axis = 1,keepdims = True)
    # Divide x by its norm.
    #x = None
    x = x/x_norm
    ### END CODE HERE ###

    return x
x = np.array([
    [0, 3, 4],
    [2, 6, 4]])
print("normalizeRows(x) = " + str(normalizeRows(x)))
normalizeRows(x) = [[ 0.          0.6         0.8       ]
 [ 0.26726124  0.80178373  0.53452248]]

Expected Output:

<table style="width:60%">

 <tr> 
   <td> **normalizeRows(x)** </td> 
   <td> [[ 0.          0.6         0.8       ]

[ 0.13736056 0.82416338 0.54944226]]</td>
</tr>

</table>

Note:
In normalizeRows(), you can try to print the shapes of x_norm and x, and then rerun the assessment. You'll find out that they have different shapes. This is normal given that x_norm takes the norm of each row of x. So x_norm has the same number of rows but only 1 column. So how did it work when you divided x by x_norm? This is called broadcasting and we'll talk about it now!

1.5 - Broadcasting and the softmax function ####(广播和softmax函数)

A very important concept to understand in numpy is "broadcasting". It is very useful for performing mathematical operations between arrays of different shapes. For the full details on broadcasting, you can read the official broadcasting documentation.

Exercise: Implement a softmax function using numpy. You can think of softmax as a normalizing function used when your algorithm needs to classify two or more classes. You will learn more about softmax in the second course of this specialization.

Instructions:

  • $ \text{for } x \in \mathbb{R}^{1\times n} \text{, } softmax(x) = softmax(\begin{bmatrix}
    x_1 &&
    x_2 &&
    ... &&
    x_n
    \end{bmatrix}) = \begin{bmatrix}
    \frac{e{x_1}}{\sum_{j}e{x_j}} &&
    \frac{e{x_2}}{\sum_{j}e{x_j}} &&
    ... &&
    \frac{e{x_n}}{\sum_{j}e{x_j}}
    \end{bmatrix} $

  • $\text{for a matrix } x \in \mathbb{R}^{m \times n} \text{, $x_{ij}$ maps to the element in the $i^{th}$ row and $j^{th}$ column of $x$, thus we have: }$ $$softmax(x) = softmax\begin{bmatrix}
    x_{11} & x_{12} & x_{13} & \dots & x_{1n} \
    x_{21} & x_{22} & x_{23} & \dots & x_{2n} \
    \vdots & \vdots & \vdots & \ddots & \vdots \
    x_{m1} & x_{m2} & x_{m3} & \dots & x_{mn}
    \end{bmatrix} = \begin{bmatrix}
    \frac{e{x_{11}}}{\sum_{j}e{x_{1j}}} & \frac{e{x_{12}}}{\sum_{j}e{x_{1j}}} & \frac{e{x_{13}}}{\sum_{j}e{x_{1j}}} & \dots & \frac{e{x_{1n}}}{\sum_{j}e{x_{1j}}} \
    \frac{e{x_{21}}}{\sum_{j}e{x_{2j}}} & \frac{e{x_{22}}}{\sum_{j}e{x_{2j}}} & \frac{e{x_{23}}}{\sum_{j}e{x_{2j}}} & \dots & \frac{e{x_{2n}}}{\sum_{j}e{x_{2j}}} \
    \vdots & \vdots & \vdots & \ddots & \vdots \
    \frac{e{x_{m1}}}{\sum_{j}e{x_{mj}}} & \frac{e{x_{m2}}}{\sum_{j}e{x_{mj}}} & \frac{e{x_{m3}}}{\sum_{j}e{x_{mj}}} & \dots & \frac{e{x_{mn}}}{\sum_{j}e{x_{mj}}}
    \end{bmatrix} = \begin{pmatrix}
    softmax\text{(first row of x)} \
    softmax\text{(second row of x)} \
    ... \
    softmax\text{(last row of x)} \
    \end{pmatrix} $$

# GRADED FUNCTION: softmax

def softmax(x):
    """Calculates the softmax for each row of the input x.

    Your code should work for a row vector and also for matrices of shape (n, m).

    Argument:
    x -- A numpy matrix of shape (n,m)

    Returns:
    s -- A numpy matrix equal to the softmax of x, of shape (n,m)
    """
    
    ### START CODE HERE ### (≈ 3 lines of code)
    # Apply exp() element-wise to x. Use np.exp(...).
    x_exp = None
    x_exp = np.exp(x)

    # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
    x_sum = None
    x_sum = np.sum(x_exp,axis = 1,keepdims = True)
    
    # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
    s = None
    s = x_exp/x_sum

    ### END CODE HERE ###
    
    return s
x = np.array([
    [9, 2, 5, 0, 0],
    [7, 5, 0, 0 ,0]])
print("softmax(x) = " + str(softmax(x)))
softmax(x) = [[  9.80897665e-01   8.94462891e-04   1.79657674e-02   1.21052389e-04
    1.21052389e-04]
 [  8.78679856e-01   1.18916387e-01   8.01252314e-04   8.01252314e-04
    8.01252314e-04]]

Expected Output:

<table style="width:60%">

 <tr> 
   <td> **softmax(x)** </td> 
   <td> [[  9.80897665e-01   8.94462891e-04   1.79657674e-02   1.21052389e-04
1.21052389e-04]

[ 8.78679856e-01 1.18916387e-01 8.01252314e-04 8.01252314e-04
8.01252314e-04]]</td>
</tr>
</table>

Note:

  • If you print the shapes of x_exp, x_sum and s above and rerun the assessment cell, you will see that x_sum is of shape (2,1) while x_exp and s are of shape (2,5). x_exp/x_sum works due to python broadcasting.

Congratulations! You now have a pretty good understanding of python numpy and have implemented a few useful functions that you will be using in deep learning.

<font color='blue'>
What you need to remember:

  • np.exp(x) works for any np.array x and applies the exponential function to every coordinate
  • the sigmoid function and its gradient
  • image2vector is commonly used in deep learning
  • np.reshape is widely used. In the future, you'll see that keeping your matrix/vector dimensions straight will go toward eliminating a lot of bugs.
  • numpy has efficient built-in functions
  • broadcasting is extremely useful

2) Vectorization(向量)

In deep learning, you deal with very large datasets. Hence, a non-computationally-optimal function can become a huge bottleneck in your algorithm and can result in a model that takes ages to run. To make sure that your code is computationally efficient, you will use vectorization. For example, try to tell the difference between the following implementations of the dot/outer/elementwise product.

import time

x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]

### CLASSIC DOT PRODUCT OF VECTORS IMPLEMENTATION ###
tic = time.process_time()
dot = 0
for i in range(len(x1)):
    dot+= x1[i]*x2[i]
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")

### CLASSIC OUTER PRODUCT IMPLEMENTATION ###
tic = time.process_time()
outer = np.zeros((len(x1),len(x2))) # we create a len(x1)*len(x2) matrix with only zeros
for i in range(len(x1)):
    for j in range(len(x2)):
        outer[i,j] = x1[i]*x2[j]
toc = time.process_time()
print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")

### CLASSIC ELEMENTWISE IMPLEMENTATION ###
tic = time.process_time()
mul = np.zeros(len(x1))
for i in range(len(x1)):
    mul[i] = x1[i]*x2[i]
toc = time.process_time()
print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")

### CLASSIC GENERAL DOT PRODUCT IMPLEMENTATION ###
W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array
tic = time.process_time()
gdot = np.zeros(W.shape[0])
for i in range(W.shape[0]):
    for j in range(len(x1)):
        gdot[i] += W[i,j]*x1[j]
toc = time.process_time()
print ("gdot = " + str(gdot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
dot = 278
 ----- Computation time = 0.07802799999989674ms
outer = [[ 81.  18.  18.  81.   0.  81.  18.  45.   0.   0.  81.  18.  45.   0.
    0.]
 [ 18.   4.   4.  18.   0.  18.   4.  10.   0.   0.  18.   4.  10.   0.
    0.]
 [ 45.  10.  10.  45.   0.  45.  10.  25.   0.   0.  45.  10.  25.   0.
    0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.]
 [ 63.  14.  14.  63.   0.  63.  14.  35.   0.   0.  63.  14.  35.   0.
    0.]
 [ 45.  10.  10.  45.   0.  45.  10.  25.   0.   0.  45.  10.  25.   0.
    0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.]
 [ 81.  18.  18.  81.   0.  81.  18.  45.   0.   0.  81.  18.  45.   0.
    0.]
 [ 18.   4.   4.  18.   0.  18.   4.  10.   0.   0.  18.   4.  10.   0.
    0.]
 [ 45.  10.  10.  45.   0.  45.  10.  25.   0.   0.  45.  10.  25.   0.
    0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.
    0.]]
 ----- Computation time = 0.4157089999998753ms
elementwise multiplication = [ 81.   4.  10.   0.   0.  63.  10.   0.   0.   0.  81.   4.  25.   0.   0.]
 ----- Computation time = 0.26551399999963365ms
gdot = [ 12.58435294  21.31757681  32.19726437]
 ----- Computation time = 0.30826200000033666ms
x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]

### VECTORIZED DOT PRODUCT OF VECTORS ###
tic = time.process_time()
dot = np.dot(x1,x2)
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")

### VECTORIZED OUTER PRODUCT ###
tic = time.process_time()
outer = np.outer(x1,x2)
toc = time.process_time()
print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")

### VECTORIZED ELEMENTWISE MULTIPLICATION ###
tic = time.process_time()
mul = np.multiply(x1,x2)
toc = time.process_time()
print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")

### VECTORIZED GENERAL DOT PRODUCT ###
tic = time.process_time()
dot = np.dot(W,x1)
toc = time.process_time()
print ("gdot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
dot = 278
 ----- Computation time = 0.06879099999990146ms
outer = [[81 18 18 81  0 81 18 45  0  0 81 18 45  0  0]
 [18  4  4 18  0 18  4 10  0  0 18  4 10  0  0]
 [45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
 [63 14 14 63  0 63 14 35  0  0 63 14 35  0  0]
 [45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
 [81 18 18 81  0 81 18 45  0  0 81 18 45  0  0]
 [18  4  4 18  0 18  4 10  0  0 18  4 10  0  0]
 [45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]]
 ----- Computation time = 0.08057500000013817ms
elementwise multiplication = [81  4 10  0  0 63 10  0  0  0 81  4 25  0  0]
 ----- Computation time = 0.10312099999998381ms
gdot = [ 12.58435294  21.31757681  32.19726437]
 ----- Computation time = 1.1732280000003037ms

As you may have noticed, the vectorized implementation is much cleaner and more efficient. For bigger vectors/matrices, the differences in running time become even bigger.

Note that np.dot() performs a matrix-matrix or matrix-vector multiplication. This is different from np.multiply() and the * operator (which is equivalent to .* in Matlab/Octave), which performs an element-wise multiplication.

2.1 Implement the L1 and L2 loss functions

Exercise: Implement the numpy vectorized version of the L1 loss. You may find the function abs(x) (absolute value of x) useful.

Reminder:

  • The loss is used to evaluate the performance of your model. The bigger your loss is, the more different your predictions ($ \hat{y} $) are from the true values ($y$). In deep learning, you use optimization algorithms like Gradient Descent to train your model and to minimize the cost.

(损失用于评估模型的性能。你的损失越大,你的预测与真实值(yy)的差别就越大。在深度学习中,您可以使用梯度下降等优化算法来训练模型,并将成本降至最低。)

  • L1 loss is defined as:
    $$\begin{align} & L_1(\hat{y}, y) = \sum_{i=0}m|y{(i)} - \hat{y}^{(i)}| \end{align}\tag{6}$$
# GRADED FUNCTION: L1

def L1(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    
    Returns:
    loss -- the value of the L1 loss function defined above
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    loss = None
    loss = sum(abs(y - yhat))
    ### END CODE HERE ###
    
    return loss
yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L1 = " + str(L1(yhat,y)))
L1 = 1.1

Expected Output:

<table style="width:20%">

 <tr> 
   <td> **L1** </td> 
   <td> 1.1 </td> 
 </tr>

</table>

Exercise: Implement the numpy vectorized version of the L2 loss. There are several way of implementing the L2 loss but you may find the function np.dot() useful. As a reminder, if $x = [x_1, x_2, ..., x_n]$, then np.dot(x,x) = $\sum_{j=0}^n x_j^{2}$.

  • L2 loss is defined as $$\begin{align} & L_2(\hat{y},y) = \sum_{i=0}m(y{(i)} - \hat{y}{(i)})2 \end{align}\tag{7}$$
# GRADED FUNCTION: L2

def L2(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    
    Returns:
    loss -- the value of the L2 loss function defined above
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    loss = None
    #loss = sum((y - yhat)**2)
    loss = np.dot((yhat-y),(yhat-y))
    ### END CODE HERE ###
    
    return loss
yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L2 = " + str(L2(yhat,y)))
L2 = 0.43

Expected Output:
<table style="width:20%">
<tr>
<td> L2 </td>
<td> 0.43 </td>
</tr>
</table>

Congratulations on completing this assignment. We hope that this little warm-up exercise helps you in the future assignments, which will be more exciting and interesting!

<font color='blue'>
What to remember:

  • Vectorization is very important in deep learning. It provides computational efficiency and clarity.
  • You have reviewed the L1 and L2 loss.
  • You are familiar with many numpy functions such as np.sum, np.dot, np.multiply, np.maximum, etc...
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容

  • 刚刚离开学校这个让人又爱又恨的地方。我就得面对现实,开始准备实习生涯。社会对于我而言实在是深不可测。犹如汪洋大海,...
    MISS郝喵喵阅读 421评论 0 3
  • 作为一名没有时间煲剧的新青年,你可以不追剧,但你不能错过剧中戳心金句。那简直就是女人的课本,男人的教材啊!且看荃心...
    奋蹄阅读 2,793评论 0 3
  • 为何有的微商可以月入百万甚至更多,而有的微商业绩却停滞不前?为何有的微商拥有数十万的狼性团队,而有的微商几十人都带...
    莉莉说阅读 113评论 0 0
  • 不用专注于旅程的终点,那里有太多的纷繁;而是专注于当下,专注于当下的你。对!就是此时此刻,就是你身处的这一时刻,你...
    Phanleys阅读 388评论 0 0
  • 这本书很早之前就一直想看的,因为我也想做个斜杠青年,susan在工作中找不到热情,辞职去做了自己想做的事,过得开心...
    小小红树林阅读 252评论 0 0