TCGAbiolinks包常用来TCGA的下载和各种常用分析,本人在使用TCGAbiolinks下载和整理TCGA临床信息时碰到一些麻烦,具体如下:
TCGAbiolinks下载临床信息代码常规如下:
library(TCGAbiolinks)
projects <- TCGAbiolinks::getGDCprojects()$project_id
projects <- projects[grepl('^TCGA', projects, perl=TRUE)]
meta=list()
for(project in projects){
query <- GDCquery(project = project,
data.category = "Clinical",
file.type = "xml")
GDCdownload(query)
clinical <- GDCprepare_clinic(query, clinical.info = "patient")
meta[[project]]=clinical
}
meta=as.data.frame(rbind,meta)
通过以上代码就把TCGA的33种肿瘤的临床信息就下载完了。GDCprepare_clinic函数中关于临床信息的选项不多,就drug, admin, follow_up,radiation, patient, stage_event这么几个,而我们一般需要的是bcr_patient_barcode, vital_status, days_to_death, days_to_last_followup, days_to_birth, gender, stage_event这些信息。因此,还需要对这个代码进行一些修改,参考了生信技能树的代码。
另外一点就是TCGA-GBM, TCGA-LAML, TCGA-LGG, TCGA-PCPG, TCGA-SARC这几个 肿瘤是没有stage_event信息的,所以TCGA的33种肿瘤还不能一次性处理。
library(TCGAbiolinks)
library(XML)
library(dplyr)
library(stringr)
library(tibble)
projects <- getGDCprojects()$project_id
projects <- projects[grepl('^TCGA', projects, perl=TRUE)]
projects <- projects[order(projects)]
projects1=projects[-which(projects %in% c("TCGA-GBM", "TCGA-LAML", "TCGA-LGG", "TCGA-PCPG", "TCGA-SARC"))]
# No stage information was found in project2.
projects2=c("TCGA-GBM", "TCGA-LAML", "TCGA-LGG", "TCGA-PCPG", "TCGA-SARC")
clinical1=list()
for (project in projects1) {
query <- GDCquery(project = project,
data.category = "Clinical",
file.type = "xml")
GDCdownload(query)
dir1="/harmonized/Clinical/Clinical_Supplement/"
xmls=dir(paste0('GDCdata/',project,dir1),pattern = "*.xml$",recursive = T)
cl=list()
use_col = c('bcr_patient_barcode',
'vital_status',
'days_to_death',
'days_to_last_followup',
'days_to_birth',
'gender' ,
'stage_event')
for(i in 1:length(xmls)){
result = xmlParse(paste0('GDCdata/',project,dir1,xmls[[i]]))
rootnode = xmlRoot(result)
dat=xmlToDataFrame(rootnode[2])
if(sum(use_col %in% colnames(dat))==7)
cl[[i]]=dat[,use_col]
}
clinical1[[project]] = do.call(rbind,cl)
}
clinical2=list()
for (project in projects2) {
query <- GDCquery(project = project,
data.category = "Clinical",
file.type = "xml")
GDCdownload(query)
dir1="/harmonized/Clinical/Clinical_Supplement/"
xmls=dir(paste0('GDCdata/',project,dir1),pattern = "*.xml$",recursive = T)
cl=list()
use_col= c('bcr_patient_barcode',
'vital_status',
'days_to_death',
'days_to_last_followup',
'days_to_birth',
'gender')
for(i in 1:length(xmls)){
result = xmlParse(paste0('GDCdata/',project,dir1,xmls[[i]]))
rootnode = xmlRoot(result)
dat=xmlToDataFrame(rootnode[2])
if(sum(use_col %in% colnames(dat))==6)
cl[[i]]=dat[,use_col]
}
clinical2[[project]] = do.call(rbind,cl)
}
clinical1=as.data.frame(do.call(rbind,clinical1))
clinical2=as.data.frame(do.call(rbind,clinical2))
clinical2$stage_event=NA
identical(colnames(clinical1),colnames(clinical2))
meta=rbind(clinical1,clinical2)%>%
tibble::add_column(Cancer = stringr::str_split(rownames(.),'-',simplify = T)[,2], .before="bcr_patient_barcode")
meta$Cancer=stringr::str_split(meta$Cancer,'[.]',simplify = T)[,1]
meta=meta[!duplicated(meta$bcr_patient_barcode),]
meta=meta[order(meta$Cancer,meta$bcr_patient_barcode),]
rownames(meta) <- meta$bcr_patient_barcode
# rename colname
colnames(meta)=c('Cancer','ID','event','death','last_followup','age','gender','stage')
# define missing value as NA
meta[meta==""]=NA
查看一下现在的临床信息:
接下来就是计算生存期,整理分期信息了。
# calculate survival time
table(meta$event)
# Alive Dead
# 8405 2748
meta$time = ifelse(meta$event=="Alive",
meta$last_followup,
meta$death)
meta$time = round(as.numeric(meta$time)/30,2)
meta$age = round(-(as.numeric(meta$age)/365),0)
meta$gender=ifelse(meta$gender=="MALE","M","F")
# define event,Alive=0,Dead=1
meta$event=ifelse(meta$event=='Alive',
0,
1)
table(meta$event)
# 0 1
# 8405 2748
k1 = meta$time>=0.1;table(k1)
# FALSE TRUE
# 598 10477
k2 = !(is.na(meta$time)|is.na(meta$event));table(k2)
# FALSE TRUE
# 92 11075
meta = meta[k1&k2,]
nrow(meta)
# [1] 10477
# stage
meta$stage=str_split(meta$stage,"Stage ",simplify = T)[,2]
a = str_extract_all(str_sub(meta$stage,1,4),"I|V");head(a)
b = sapply(a,paste,collapse = "")
table(b)
# I II III IV
# 2562 2487 2206 2259 963
meta$stage = b
# set missing value as NA
table(meta$stage)
# I II III IV
# 2562 2487 2206 2259 963
meta[meta=="" | meta=="not reported"]=as.character(NA)
table(meta$stage,useNA = "always")
# I II III IV <NA>
# 2487 2206 2259 963 2562
meta=meta[,c('Cancer','event','time','age','gender','stage')]
整理好的临床信息如下:
看看每个肿瘤病例数:
table(meta$Cancer)
# ACC BLCA BRCA CESC CHOL COAD DLBC ESCA GBM HNSC KICH KIRC KIRP LAML LGG LIHC LUAD LUSC MESO OV PAAD PCPG PRAD READ
# 91 393 1025 283 47 340 44 150 592 518 109 521 260 173 504 341 478 470 85 581 179 178 498 127
# SARC SKCM STAD TGCT THCA THYM UCEC UCS UVM
# 251 435 384 132 498 122 536 54 78
最后就是和表达矩阵进行匹配了,log2(tpm+1)形式的表达矩阵长这样:
匹配临床信息和表达矩阵:
# match or merge meta and expression
exprSet=tpm%>%
filter(Group=="Tumor")%>%
tibble::add_column(ID = stringr::str_sub(rownames(.),1,12),
.before="Cancer") %>%
filter(!duplicated(ID)) %>%
remove_rownames %>%
tibble::column_to_rownames("ID")
exprSet=exprSet[,-(1:2)]
s = intersect(rownames(meta),rownames(exprSet));length(s)
# [1] 9678
exprSet = exprSet[s,]
meta = meta[s,]
dim(exprSet)
# [1] 9678 19571
dim(meta)
#[1] 9678 6
identical(rownames(meta),rownames(exprSet))
#[1] TRUE
如果要合并临床信息和表达矩阵的话,可以执行 以下代码:
meta$ID=rownames(meta)
exprSet$ID=rownames(exprSet)
meta=inner_join(meta,exprSet)%>%
tibble::column_to_rownames("ID")
致谢:
TCGAbiolinks
生信技能树