正态分布2018-04-17

正态分布

上述分布都是离散概率分布,当随机变量是连续型时,情况就完全不一样了。因为离散概率的本质是求x取某个特定值的概率,而连续随机变量不行,它的取值是可以无限分割的,它取某个值时概率近似于0。连续变量是随机变量在某个区间内取值的概率,此时的概率函数叫做概率密度函数。

正态概率分布是连续型随机变量中最重要的分布。世界上绝大部分的分布都属于正态分布,人的身高体重、考试成绩、降雨量等都近似服从。

正态分布如同一条钟形曲线。中间高,两边低,左右对称。想象身高体重、考试成绩,是否都呈现这一类分布态势:大部分数据集中在某处,小部分往两端倾斜。


正态概率密度函数为:

是不是看得头晕了?u代表均值,σ代表标准差,两者不同的取值将会造成不同形状的正态分布。均值表示正态分布的左右偏移,标准差决定曲线的宽度和平坦,标准差越大曲线越平坦。

以前介绍过一个正态分布的经验法则:

正态随机变量有69.3%的值在均值加减一个标准差的范围内,95.4%的值在两个标准差内,99.7%的值在三个标准差内。这条经验法则可以帮助我们快速计算数据的大体分布。


均值u=0,标准差σ=1的正态分布叫做标准正态分布。它的随机变量用z表示,它是推断统计的基础。将均值和标准差代入正态概率密度函数,得到一个简化的公式:

现在可以用简化的公式计算概率密度了。首先学习一个新的函数叫累计分布函数,它是概率密度函数的积分。用P(X<=x)表示随机变量小于或者等于某个数值的概率,F(x) = P(X<=x)。


曲线就是概率密度函数,当x取某个值时,曲线上f(x)点的数值即表示随机变量在对应的x点值的取值概率,曲线与X轴相交的阴影面积就是累计分布函数。我们不妨把概率密度函数按其名字简单理解成「密度」,毕竟连续变量只有在区间中才有计算的意义,于是密度函数充当了辅助计算的角色。分析中我们更多实用累计分布函数。

标准正态分布中,给定一个值z,可以计算随机变量z小于等于某一个值的概率;z在两个值之间的概率;以及z大于等于一个值的概率。这三种计算都用到累计分布函数,分别记作P(z<=x),P(x1<=z<=x2),P(z>=x)。

首先计算z小于等于1的概率,即P(z<=1)。由excel 的函数NORM.DIST(1,0,1,TRUE)求得值为0.8413。于是P(z<=1)=0.8413。同理,P(z>1) = 1-P(z<=1) = 0.1586。

若要计算z在区间-1~1.25的概率,即P(-1<=z<=1.25)。可以将其拆解为公式:P(-1<=z<=1.25) = P(z<=1.25) - P(z<=-1) = 0.735。

如果大家在公式转换中有困惑,不妨结合上面的阴影图看。靠左的阴影即z小于等于0.8时(目测)的概率,如果我们要算0~0.8之间的概率呢?就是把z<=0的那一半给挖掉,非常粗暴的算法。

到了这里大家可能发觉,在正态分布的计算中,不论求哪一类区间,我们都是先转换成z小于等于某个值先计算。这是一个潜移默化的规则,因为早期正态概率的计算都要用到标准正态概率表,它以z小于等于作查询标准。现在虽然计算资源已经大大丰富,但是这个习惯还是保留了下来。

之所以强调标准正态分布,是因为所有的正态分布概率都可以利用标准正态分布计算。当我们具有一个任意均值的u和标准差σ,都能将其转换成标准状态分布。

现在有一个u=10和σ=2的正态随机变量,求x在10与14之间的概率是多少?

当x=10时,z=(10-10)/2=2。当x=14时,z=(14-10)/2=2。于是x在10和14之间的概率等价于标准正态分布中0和2之间的概率。计算P(0<=z<=2) =P(z<=2) - P(z<=0) =0.4772。

现在是最后一个运营活动了,不再是抽奖,而是最终赠送奖品的环节。已知奖品的保质期满足正态分布,均值90天,标准差5天。为了考虑用户体验,想知道奖品70天以内就坏的概率是多少?

当x=70时,有z=(70-90)/5 = -4。p(z<=-4)=0.003%。概率非常小,可以忽略不计,所以产品质量杠杠的。经历了那么多活动,老板终于可以松一口气了。

在概率分布中还有一个概念叫正态近似。当试验次数很大时,二项分布可以近似于正态分布,泊松分布也有相似的情况,大家有兴趣可以去了解,这是一种简便方法,不过工作中现在都是计算机了,这点反而不重要了。

了解完各类分布后,我们将进入最后的环节,假设检验,它是基于概率的理论,数据分析中的AB测试,就是其最常见的应用。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356

推荐阅读更多精彩内容

  • 按照用途分类出以下统计函数: AVEDEV 用途:返回一组数据与其平均值的绝对偏差的平均值,该函数可以评测数据(例...
    四方院祭司阅读 2,900评论 0 3
  • 查看原文 1 简介 Deep Learning最简单的一种方法是利用人工神经网络的特点,人工神经网络(ANN)本身...
    JinkeyAI阅读 6,769评论 0 4
  • 拥有这本《遇见未知的自己》已经几个月了,可是一直没有时间静下心来好好阅读,就决定利用春节的时间在家来静静的品读。 ...
    唇印象Merry姐姐阅读 497评论 2 1
  • 第四十七章 回病房时,平生接到了江林的电话。为了不让舅舅有心里负担,关于工作的事,平生不想带到病房里去,便让余景灏...
    星如雨雨雨阅读 224评论 0 0
  • onchange事件用于检测值的变化。根据变化执行指定的脚本。 支持onchange事件的html标签有:inpu...
    报告老师阅读 579评论 0 0