情感模型

Problem Analysis

The problem is that users say a sentence include some emotion and in corresponding our model need to produce several sentences to respond the user from different emotional angle.First we need to analysis or know the emotion of the user's question.And second we can return proper words.For example, one says "What a lovely day." and we can say "Haha, so happy today." in response.As the problem is unfamiliar to us in a degree, we need to search some papers and do some analysis, in the end we will cite the papers we read.

High-Level System Design

1 Related work

1.1Emotional Intelligence

In interactions between humans and artificial agents, the capability to detect signs of human emotions and to suitably react to them can enrich communication.

1.2 Large-scale Sequence-to-sequence BasedConversation Generation

Lots of works have been done to improve the content quality generation.Here we use some to generate responses both relevant in content and coherent in emotion.

1.3 Memory-based Networks

We can adopt a dynamic memory to model the change of an internal emotion state, and a static memory to store a dictionary of emotion words in our model.

2 High-Level System Design

We want to train several independent networks ,which are used to deal with different emotional  questions, such as happiness and anger .

2.1 Introduction of frame diagram 

ECM model

As shown in the overall framework of the model, the user's problem is entered as "What a lovely day!", which is encoded as a hidden vector by Encoder, and then the implicit vector of the problem is enhanced by the attention mechanism, which is combined with the state vector s of decoder to generate different words, and the information selectivity of the different parts of H is enhanced by the implicit vector of the problem and then get the vector c.The emotion category is designated as "Happiness". After indexing, we get the emotion category embedding vector, the initial emotion state memory vector and the corresponding emotion word list.Decoder accepts the problem vector c through the attention mechanism, the emotion category embedding vector and the initial emotional state memory vector as input, and then generates the generation probability o of the next word through recurrent neural network, then passes the emotional word list to the weighting of the emotion word and the non emotion word.Finally we obtain the generation probability of the final word by sampling. You can get the output "Haha, so happy today!"

2.2 Emotion Category Embedding

Here are some brief introductions.We initialize one vector for each emotion category, and then learn the emotion category representations through training.

2.3 Internal Memory

we design an internal memory module to approach the emotion dynamics during decoding.


Data flow of the decoder with an internal memory.

2.4 External Memory

we use an external memory model to model emotion expressions explicitly by assigning different generation probabilities to emotion words and generic words.


Data flow of the decoder with an external memory. 

2.5 Loss Function

We can get the the loss function later, when we will analysis all the aspects about loss.And then we can write or proposal some methods to lower the loss.  

Expected Goal

We want to train a model to produce proper respond with users's question include some emotion , get a loss function and find some ways to lower the loss.

Schedule and Human Allocation(in Chinese)

组长:胡钦涛

组员:吴行、刘章杰、汤敏芳、许彦夫

人员安排:

吴行 胡钦涛 许彦夫 for coding,刘章杰 汤敏芳 for files

进度安排:

第5-7周:论文查询、模型可行性分析及确定

第8-9周:数据集收集标记

第9-11周:模型训练,调参

第11-12周:结果分析,撰写报告

Appendix

Affect-LM:A Neural Language Model for Customizable Affective Text Generation

Affective Neural Response Generation

Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,820评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,648评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,324评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,714评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,724评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,328评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,897评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,804评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,345评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,431评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,561评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,238评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,928评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,417评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,528评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,983评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,573评论 2 359

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,345评论 0 10
  • 13上课时间在学校逛是件很刺激的事,加上我是有目标的闲逛,所以更要集中注意力,这很累。我站在办公室外假装路过,眼睛...
    牧__樵阅读 228评论 0 1
  • 大家开车在高速上行驶的时候一定会有一个奇特的感受——“飘” 如果你并没有这种感受,那么恭喜你,你的爱车很“稳”。 ...
    塑如意生活阅读 286评论 0 0
  • 香烟与爱情 文/万年 借一轮红日 点燃 孤独和寂寞 这世界只属于 傻傻我 爱 并没有对与错 给我阳光和温暖 你来 ...
    七哥诗心阅读 1,203评论 0 0