flink入门-流式计算概念

一、流式计算的世界观

1.1 万物皆流

只要时间不停万事万物都没有静止。我们所以为的静态,不过是流中的一个片段。
意味着流的世界,不在乎所谓的状态,在乎的是变化,也就是事件的发生,通过事件来表示。

1.2 升维

批量的时代,我们只记录关键的信息,只在乎当前的状态,不会去记录状态是如何一步步变化至当前状态的,计算所面向的数据也是静态的,从一个态的数据变化到另一个静态的数据。

流的时代我们在乎的是变化,也就是一系列的事件,我们计算所面临将是时时刻刻在更新流动的数据。

这完全就上升了一个维度,就像四维生物可以穿梭于时间之中。

1.3 流的时间观念

时间对流来说是至关重要的,因为这关系事件与事件之间的顺序关系,一旦错乱便有可能导致计算出的当前状态是错误的。时间让事件有了秩序。

二、流式计算的实体

2.1 架构

数据源不断产生数据形成流,通过计算生成新的流,不断去更新目标数据源,实现结果数据的实时更新。

2.2 计算

流式计算和批量计算的算子无外乎都是那些数据的操作。区别就是批量面向的数据是一坨一坨打包好的,静态的;流式面向的是流无限的数据。在分布式环境中批量计算是将计算移动到相应的数据上进行运行,而流式计算是将定义好的计算部署到分布式的节点上,让数据在上面流动。


  • Map类:数据只依赖于当前这条数据。
  • agg:聚合操作
  • window:部分数据的聚到一起进行计算
  • join:不同的数据源通过相同的key进行融合
  • cep:例如,事件的模式匹配,例如给做了事件A之后做了事件B的用户发生运营短信。
  • 其他

2.2 应用场景

1.低延时。比如实时的pv、uv。
2.实时ETL。例如行为数据join维表,近实时落入hdfs。
3.事件驱动场景。例如上面的cep。

三、流计算的难点

3.1 时间

第一部分说时间在流的世界观中代表了事件的秩序,因为实时的环境会由于各种各样的原因(比如网络延时)导致事件到达计算节点的顺序和发生的顺序很可能是不一样的。

3.2 有限的内存&无限的数据

流计算面临的是源源不断流入的数据,而如果还像批量计算那样的操作方式来计算的化,很可能就会导致计算根本无法结束,或者随着时间的推移需要保存的数据越来越多,导致内存爆掉。

3.3 longlive&错误恢复

因为数据是不断产生的,所以需要计算是longlive的,一直存在。但时间长了出问题的概率大大增加,一旦挂掉,一些计算过程缓存的数据怎么保存、怎么恢复机会是个比较大的问题。

3.4 分布式环境

分布式环境下,共享数据实时同步,实现协同,这又是另一个故事了。

3.5 动态扩容

流是实时的,那数据的速率就是不稳定的,就像明星结婚啥的,会有突发的高峰,如何能实时适应这样的突发。

四、总结

本文希望同学们能对流计算有个大概的了解,了解它的应用场景、架构、所面临的难点。了解了这些接下来学习就有了方向。
关注我的主页 https://www.jianshu.com/u/7478cf233940 一起学习大数据吧

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容