完整的Keras训练MNIST数据集的过程---卷积神经网络CNN

已有注释,不解释,今天算是真正理解卷积层和池化层的意义和作用了。比MLP识别率要高。

一,代码

# 导入所需模块
import numpy as np
import pandas as pd
from keras.utils import np_utils
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D

np.random.seed(10)

# 查看单项数据
def plot_image(image):
    fig = plt.gcf()
    fig.set_size_inches(2, 2)
    plt.imshow(image, cmap='binary')
    plt.show()
    
# 查看多项数据
def plot_images_labels_prediction(images, labels, prediction, idx, num=10):
    fig = plt.gcf()
    fig.set_size_inches(12, 14)
    if num > 25: num = 25
    for i in range(0, num):
        ax = plt.subplot(5, 5, 1+i)
        ax.imshow(images[idx], cmap='binary')
        title = "label=" + str(labels[idx])
        if len(prediction) > 0:
            title += ", predict=" + str(prediction[idx])
            
        ax.set_title(title, fontsize=10)
        ax.set_xticks([]); ax.set_yticks([])
        idx += 1
    plt.show()


# 读取MNIST数据
(x_Train, y_Train), \
(x_Test, y_Test) = mnist.load_data()


# 将features转换为4维矩阵
x_Train4D = x_Train.reshape(x_Train.shape[0], 28, 28, 1).astype('float32')
x_Test4D = x_Test.reshape(x_Test.shape[0], 28, 28, 1).astype('float32')

# 将features标准化
x_Train4D_normalize = x_Train4D / 255
x_Test4D_normalize = x_Test4D / 255

# label以One-Hot Encoding进行转换
y_Train_OneHot = np_utils.to_categorical(y_Train)
y_Test_OneHot = np_utils.to_categorical(y_Test)

# 建立Sequential模型
model = Sequential()

# 建立卷积层1
model.add(Conv2D(filters=16,
                 kernel_size=(5, 5),
                 padding='same',
                 input_shape=(28, 28, 1),
                 activation='relu'))

# 建立池化层1
model.add(MaxPooling2D(pool_size=(2, 2)))

# 建立卷积层2
model.add(Conv2D(filters=36,
                 kernel_size=(5, 5),
                 padding='same',
                 activation='relu'))

# 建立池化层2
model.add(MaxPooling2D(pool_size=(2, 2)))

# 加入Dropout功能避免过度拟合
model.add(Dropout(0.5))

# 建立平坦层
model.add(Flatten())


# 建立隐藏层
model.add(Dense(128, activation='relu'))

# 加入Dropout功能避免过度拟合
model.add(Dropout(0.5))


# 建立输出层
model.add(Dense(10, activation='softmax'))

# 查看模型摘要
print(model.summary())

# 定义训练方式
model.compile(loss='categorical_crossentropy',
             optimizer='adam', metrics=['accuracy'])

# 开始训练
train_history = model.fit(x=x_Train4D_normalize,
                         y=y_Train_OneHot,
                         validation_split=0.2,
                         epochs=5,
                         batch_size=300,
                         verbose=2)

# 显示训练过程
def show_train_history(train_history, train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train History')
    plt.ylabel(train)
    plt.xlabel('Epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
    
# 画出准确率执行结果
show_train_history(train_history, 'acc', 'val_acc')
# 画出误差执行结果
show_train_history(train_history, 'loss', 'val_loss')

# 评估模型准确率
scores = model.evaluate(x_Test4D_normalize, y_Test_OneHot)
print('accuracy=', scores[1])

# 执行预测
prediction = model.predict_classes(x_Test4D_normalize)

# 显示10项预测结果
plot_images_labels_prediction(x_test_image, y_test_label, prediction, idx=340)

# 混淆矩阵显示
pd.crosstab(y_test, prediction, rownames=['label'], colnames=['predict'])
df = pd.DataFrame({'label': y_test, 'predict': prediction})

二,输出

<pre style="box-sizing: border-box; overflow: auto; font-family: monospace; font-size: inherit; display: block; padding: 1px 0px; margin: 0px; line-height: inherit; color: black; word-break: break-all; overflow-wrap: break-word; background-color: transparent; border: 0px; border-radius: 0px; white-space: pre-wrap; vertical-align: baseline;">_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_8 (Conv2D)            (None, 28, 28, 16)        416       
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 14, 14, 16)        0         
_________________________________________________________________
conv2d_9 (Conv2D)            (None, 14, 14, 36)        14436     
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 (None, 7, 7, 36)          0         
_________________________________________________________________
dropout_11 (Dropout)         (None, 7, 7, 36)          0         
_________________________________________________________________
flatten_4 (Flatten)          (None, 1764)              0         
_________________________________________________________________
dense_30 (Dense)             (None, 128)               225920    
_________________________________________________________________
dropout_12 (Dropout)         (None, 128)               0         
_________________________________________________________________
dense_31 (Dense)             (None, 10)                1290      
=================================================================
Total params: 242,062
Trainable params: 242,062
Non-trainable params: 0
_________________________________________________________________
None
Train on 48000 samples, validate on 12000 samples
Epoch 1/5
 - 60s - loss: 0.5297 - acc: 0.8328 - val_loss: 0.1023 - val_acc: 0.9702
Epoch 2/5
 - 63s - loss: 0.1619 - acc: 0.9516 - val_loss: 0.0665 - val_acc: 0.9804
Epoch 3/5
 - 62s - loss: 0.1213 - acc: 0.9630 - val_loss: 0.0513 - val_acc: 0.9844
Epoch 4/5
 - 64s - loss: 0.0997 - acc: 0.9693 - val_loss: 0.0452 - val_acc: 0.9864
Epoch 5/5
 - 61s - loss: 0.0855 - acc: 0.9738 - val_loss: 0.0395 - val_acc: 0.9885
</pre>

![image.png](https://upload-images.jianshu.io/upload_images/23118846-14ca0908256c0f84.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

![image.png](https://upload-images.jianshu.io/upload_images/23118846-daf223a539ba7192.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

<pre style="box-sizing: border-box; overflow: auto; font-family: monospace; font-size: inherit; display: block; padding: 1px 0px; margin: 0px; line-height: inherit; color: black; word-break: break-all; overflow-wrap: break-word; background-color: transparent; border: 0px; border-radius: 0px; white-space: pre-wrap; vertical-align: baseline;">10000/10000 [==============================] - 5s 501us/step
accuracy= 0.9883</pre>

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容