AVL Tree | Set 2 (Deletion)

AVL Tree | Set 2 (Deletion)

We have discussed AVL insertion in the previous post. In this post, we will follow a similar approach for deletion.
Steps to follow for deletion.*
To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete operation to perform some re-balancing. Following are two basic operations that can be performed to re-balance a BST without violating the BST property (keys(left) < key(root) < keys(right)). 1) Left Rotation 2) Right Rotation

T1, T2 and T3 are subtrees of the tree rooted with y (on left side)
or x (on right side)
                y                               x
               / \     Right Rotation          /  \
              x   T3   – – – – – – – >        T1   y
             / \       < - - - - - - -            / \
            T1  T2     Left Rotation            T2  T3

Keys in both of the above trees follow the following order
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)
So BST property is not violated anywhere.
Let w be the node to be deleted

  1. Perform standard BST delete for w.
  2. Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be the larger height child of z, and x be the larger height child of y. Note that the definitions of x and y are different from insertion here.
  3. Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4 possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the possible 4 arrangements:
a) y is left child of z and x is left child of y (Left Left Case)
b) y is left child of z and x is right child of y (Left Right Case)
c) y is right child of z and x is right child of y (Right Right Case)
d) y is right child of z and x is left child of y (Right Left Case)

Like insertion, following are the operations to be performed in above mentioned 4 cases. Note that, unlike insertion, fixing the node z won’t fix the complete AVL tree. After fixing z, we may have to fix ancestors of z as well (See this video lecture for proof)

a) Left Left Case

T1, T2, T3 and T4 are subtrees.
         z                                      y 
        / \                                   /   \
       y   T4      Right Rotate (z)          x      z
      / \          - - - - - - - - ->      /  \    /  \ 
     x   T3                               T1  T2  T3  T4
    / \
  T1   T2

b) Left Right Case


     z                               z                           x
    / \                            /   \                        /  \ 
   y   T4  Left Rotate (y)        x    T4  Right Rotate(z)    y      z
  / \      - - - - - - - - ->    /  \      - - - - - - - ->  / \    / \
T1   x                          y    T3                    T1  T2 T3  T4
    / \                        / \
  T2   T3                    T1   T2

c) Right Right Case

  z                                y
 /  \                            /   \ 
T1   y     Left Rotate(z)       z      x
    /  \   - - - - - - - ->    / \    / \
   T2   x                     T1  T2 T3  T4
       / \
     T3  T4

d) Right Left Case

   z                            z                            x
  / \                          / \                          /  \ 
T1   y   Right Rotate (y)    T1   x      Left Rotate(z)   z      x
    / \  - - - - - - - - ->     /  \   - - - - - - - ->  / \    / \
   x   T4                      T2   y                  T1  T2  T3  T4
  / \                              /  \
T2   T3                           T3   T4

Unlike insertion, in deletion, after we perform a rotation at z, we may have to perform a rotation at ancestors of z. Thus, we must continue to trace the path until we reach the root.Example:

avl-delete1
A node with value 32 is being deleted. After deleting 32, we travel up and find the first unbalanaced node which is 44. We mark it as z, its higher height child as y which is 52, and y’s higher height child as x which could be either 78 or 50 as both are of same height. We have considered 78. Now the case is Right Right, so we perform left rotation.
Image source: https://www.cs.purdue.edu/homes/ayg/CS251/slides/chap7b.pdf
C implementationFollowing is the C implementation for AVL Tree Deletion. The following C implementation uses the recursive BST delete as basis. In the recursive BST delete, after deletion, we get pointers to all ancestors one by one in bottom up manner. So we don’t need parent pointer to travel up. The recursive code itself travels up and visits all the ancestors of the deleted node.1) Perform the normal BST deletion.2) The current node must be one of the ancestors of the deleted node. Update the height of the current node.3) Get the balance factor (left subtree height – right subtree height) of the current node.4) If balance factor is greater than 1, then the current node is unbalanced and we are either in Left Left case or Left Right case. To check whether it is Left Left case or Left Right case, get the balance factor of left subtree. If balance factor of the left subtree is greater than or equal to 0, then it is Left Left case, else Left Right case.5) If balance factor is less than -1, then the current node is unbalanced and we are either in Right Right case or Right Left case. To check whether it is Right Right case or Right Left case, get the balance factor of right subtree. If the balance factor of the right subtree is smaller than or equal to 0, then it is Right Right case, else Right Left case.

// C program to delete a node from AVL Tree
#include<stdio.h>
#include<stdlib.h>
 
// An AVL tree node
struct Node
{
    int key;
    struct Node *left;
    struct Node *right;
    int height;
};
 
// A utility function to get maximum of two integers
int max(int a, int b);
 
// A utility function to get height of the tree
int height(struct Node *N)
{
    if (N == NULL)
        return 0;
    return N->height;
}
 
// A utility function to get maximum of two integers
int max(int a, int b)
{
    return (a > b)? a : b;
}
 
/* Helper function that allocates a new node with the given key and
    NULL left and right pointers. */
struct Node* newNode(int key)
{
    struct Node* node = (struct Node*)
                        malloc(sizeof(struct Node));
    node->key   = key;
    node->left   = NULL;
    node->right  = NULL;
    node->height = 1;  // new node is initially added at leaf
    return(node);
}
 
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
    struct Node *x = y->left;
    struct Node *T2 = x->right;
 
    // Perform rotation
    x->right = y;
    y->left = T2;
 
    // Update heights
    y->height = max(height(y->left), height(y->right))+1;
    x->height = max(height(x->left), height(x->right))+1;
 
    // Return new root
    return x;
}
 
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
    struct Node *y = x->right;
    struct Node *T2 = y->left;
 
    // Perform rotation
    y->left = x;
    x->right = T2;
 
    //  Update heights
    x->height = max(height(x->left), height(x->right))+1;
    y->height = max(height(y->left), height(y->right))+1;
 
    // Return new root
    return y;
}
 
// Get Balance factor of node N
int getBalance(struct Node *N)
{
    if (N == NULL)
        return 0;
    return height(N->left) - height(N->right);
}
 
struct Node* insert(struct Node* node, int key)
{
    /* 1.  Perform the normal BST rotation */
    if (node == NULL)
        return(newNode(key));
 
    if (key < node->key)
        node->left  = insert(node->left, key);
    else if (key > node->key)
        node->right = insert(node->right, key);
    else // Equal keys not allowed
        return node;
 
    /* 2. Update height of this ancestor node */
    node->height = 1 + max(height(node->left),
                           height(node->right));
 
    /* 3. Get the balance factor of this ancestor
          node to check whether this node became
          unbalanced */
    int balance = getBalance(node);
 
    // If this node becomes unbalanced, then there are 4 cases
 
    // Left Left Case
    if (balance > 1 && key < node->left->key)
        return rightRotate(node);
 
    // Right Right Case
    if (balance < -1 && key > node->right->key)
        return leftRotate(node);
 
    // Left Right Case
    if (balance > 1 && key > node->left->key)
    {
        node->left =  leftRotate(node->left);
        return rightRotate(node);
    }
 
    // Right Left Case
    if (balance < -1 && key < node->right->key)
    {
        node->right = rightRotate(node->right);
        return leftRotate(node);
    }
 
    /* return the (unchanged) node pointer */
    return node;
}
 
/* Given a non-empty binary search tree, return the
   node with minimum key value found in that tree.
   Note that the entire tree does not need to be
   searched. */
struct Node * minValueNode(struct Node* node)
{
    struct Node* current = node;
 
    /* loop down to find the leftmost leaf */
    while (current->left != NULL)
        current = current->left;
 
    return current;
}
 
// Recursive function to delete a node with given key
// from subtree with given root. It returns root of
// the modified subtree.
struct Node* deleteNode(struct Node* root, int key)
{
    // STEP 1: PERFORM STANDARD BST DELETE
 
    if (root == NULL)
        return root;
 
    // If the key to be deleted is smaller than the
    // root's key, then it lies in left subtree
    if ( key < root->key )
        root->left = deleteNode(root->left, key);
 
    // If the key to be deleted is greater than the
    // root's key, then it lies in right subtree
    else if( key > root->key )
        root->right = deleteNode(root->right, key);
 
    // if key is same as root's key, then This is
    // the node to be deleted
    else
    {
        // node with only one child or no child
        if( (root->left == NULL) || (root->right == NULL) )
        {
            struct Node *temp = root->left ? root->left :
                                             root->right;
 
            // No child case
            if (temp == NULL)
            {
                temp = root;
                root = NULL;
            }
            else // One child case
             *root = *temp; // Copy the contents of
                            // the non-empty child
            free(temp);
        }
        else
        {
            // node with two children: Get the inorder
            // successor (smallest in the right subtree)
            struct Node* temp = minValueNode(root->right);
 
            // Copy the inorder successor's data to this node
            root->key = temp->key;
 
            // Delete the inorder successor
            root->right = deleteNode(root->right, temp->key);
        }
    }
 
    // If the tree had only one node then return
    if (root == NULL)
      return root;
 
    // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
    root->height = 1 + max(height(root->left),
                           height(root->right));
 
    // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to
    // check whether this node became unbalanced)
    int balance = getBalance(root);
 
    // If this node becomes unbalanced, then there are 4 cases
 
    // Left Left Case
    if (balance > 1 && getBalance(root->left) >= 0)
        return rightRotate(root);
 
    // Left Right Case
    if (balance > 1 && getBalance(root->left) < 0)
    {
        root->left =  leftRotate(root->left);
        return rightRotate(root);
    }
 
    // Right Right Case
    if (balance < -1 && getBalance(root->right) <= 0)
        return leftRotate(root);
 
    // Right Left Case
    if (balance < -1 && getBalance(root->right) > 0)
    {
        root->right = rightRotate(root->right);
        return leftRotate(root);
    }
 
    return root;
}
 
// A utility function to print preorder traversal of
// the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
    if(root != NULL)
    {
        printf("%d ", root->key);
        preOrder(root->left);
        preOrder(root->right);
    }
}
 
/* Drier program to test above function*/
int main()
{
  struct Node *root = NULL;
 
  /* Constructing tree given in the above figure */
    root = insert(root, 9);
    root = insert(root, 5);
    root = insert(root, 10);
    root = insert(root, 0);
    root = insert(root, 6);
    root = insert(root, 11);
    root = insert(root, -1);
    root = insert(root, 1);
    root = insert(root, 2);
 
    /* The constructed AVL Tree would be
            9
           /  \
          1    10
        /  \     \
       0    5     11
      /    /  \
     -1   2    6
    */
 
    printf("Preorder traversal of the constructed AVL "
           "tree is \n");
    preOrder(root);
 
    root = deleteNode(root, 10);
 
    /* The AVL Tree after deletion of 10
            1
           /  \
          0    9
        /     /  \
       -1    5     11
           /  \
          2    6
    */
 
    printf("\nPreorder traversal after deletion of 10 \n");
    preOrder(root);
 
    return 0;
}

Output:

Preorder traversal of the constructed AVL tree is 9 1 0 -1 5 2 6 10 11 Preorder traversal after deletion of 10 1 0 -1 9 5 2 6 11

Time Complexity: The rotation operations (left and right rotate) take constant time as only few pointers are being changed there. Updating the height and getting the balance factor also take constant time. So the time complexity of AVL delete remains same as BST delete which is O(h) where h is height of the tree. Since AVL tree is balanced, the height is O(Logn). So time complexity of AVL delete is O(Logn).

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容

  • 占地款全部发下来了。想着一大家子分到的这一百多万块钱,老颜心里感觉亮敝了。因为精明他截留了一笔集体水池的赔偿款。水...
    孔骏阅读 394评论 0 3
  • 我猜大家在看到这个标题时,大家肯定想接一句“面朝大海”,不过我写的内容与海子写的《春暖花开》可是半毛钱关系都没有...
    CH意识流姑娘阅读 243评论 0 4
  • 某个朦胧的影子漂浮 在黄昏前栖的薄雾之中 夜幕降落下来 被抛弃的黑色羽毛 远远地 幽暗不明 好比那炽烈 燃起自己痛...
    小窗最亮的星星阅读 436评论 2 5
  • 早上起来,想起昨儿多了一碗米饭,心想如果把米饭简单地做成稀饭,吃着会很没味吧?不如添加点其他食材,做成菜粥吧,这样...
    黯黯红尘一路相伴阅读 807评论 2 2