激活函数——Relu,Swish

形式如下:
f(x)= \begin{cases} 0,x \leq0\\ \ x , x > 0 \end{cases}

relu 公式

f(x) = \sum^{inf}_{i=1}\sigma(x -i +0.5) -----stepped sigmoid
\approx log(1+e^x) ------- softplus function
\approx max(0,x+N(0,1))------- Rel function

其中\sigma(z) = \frac{1}{1+e^{-z}} -------- sigmoid

下面解释上述公式中的softplus,Noisy ReLU.

softplus函数与ReLU函数接近,但比较平滑, 同ReLU一样是单边抑制,有宽广的接受域(0,+inf), 但是由于指数运算,对数运算计算量大的原因,而不太被人使用.并且从一些人的使用经验来看(Glorot et al.(2011a)),效果也并不比ReLU好.
softplus的导数恰好是sigmoid函数

softplus

ReLU的稀疏性

当前,深度学习一个明确的目标是从数据变量中解离出关键因子。原始数据(以自然数据为主)中通常缠绕着高度密集的特征。然而,如果能够解开特征间缠绕的复杂关系,转换为稀疏特征,那么特征就有了鲁棒性(去掉了无关的噪声)。稀疏特征并不需要网络具有很强的处理线性不可分机制。那么在深度网络中,对非线性的依赖程度就可以缩一缩。一旦神经元与神经元之间改为线性激活,网络的非线性部分仅仅来自于神经元部分选择性激活。
对比大脑工作的95%稀疏性来看,现有的计算神经网络和生物神经网络还是有很大差距的。庆幸的是,ReLu只有负值才会被稀疏掉,即引入的稀疏性是可以训练调节的,是动态变化的。只要进行梯度训练,网络可以向误差减少的方向,自动调控稀疏比率,保证激活链上存在着合理数量的非零值。

ReLU 缺点

  • 坏死: ReLU 强制的稀疏处理会减少模型的有效容量(即特征屏蔽太多,导致模型无法学习到有效特征)。由于ReLU在x < 0时梯度为0,这样就导致负的梯度在这个ReLU被置零,而且这个神经元有可能再也不会被任何数据激活,称为神经元“坏死”。* 无负值: ReLU和sigmoid的一个相同点是结果是正值,没有负值.
  • 无负值: ReLU和sigmoid的一个相同点是结果是正值,没有负值.

ReLU变种

Leaky ReLU

当𝑥<0时,𝑓(𝑥)=𝛼𝑥,其中𝛼非常小,这样可以避免在𝑥<0时,不能够学习的情况:

f(x) = max(\alpha x,x)

称为Parametric Rectifier(PReLU)将 𝛼 作为可学习的参数.

当 𝛼 从高斯分布中随机产生时称为Random Rectifier(RReLU)

当固定为𝛼=0.01时,是Leaky ReLU。

优点:

  • 不会过拟合
  • 计算简单有效
  • 比sigmoid/tanh收敛快。

Swish

f(x) = x \cdot sigmoid(\beta x)

\beta是个常识或可训练的参数。Swish 具备有下界、平滑、非单调的特性。
Swish在深层模型上的效果优于 ReLU。

例如,仅仅使用 Swish 单元替换 ReLU 就能把 Mobile NASNetA 在 ImageNet 上的 top-1 分类准确率提高 0.9%,Inception-ResNet-v 的分类准确率提高 0.6%。

Swish

导数

swish -d

\beta= 0

Swish变为线性函数 f(x)= \frac{x}{2}

\beta \longrightarrow \infty , \sigma(x) = (1+exp(-x))^{-1} Swish变为 relu:f(x) = 2max(0,x)

所以Swish函数可以看做是介于线性函数与relu函数之间的平滑函数

Maxout

Maxout可以看做是在深度学习网络中加入一层激活函数层,包含一个参数k.这一层相比ReLU,sigmoid等,其特殊之处在于增加了k个神经元,然后输出激活值最大的值.

我们常见的隐含层节点输出:

h_i(x) = sigmoid(x^T W_{....i} + b_i)

在maxout网络中,其隐含层节点的输出表达式为

h_i(x) = max_{j\in[1,k]}z_{ij}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容