2018-05-29齐次坐标的理解

1. 齐次

事实上带齐次的概念很多,纯粹要说“齐次”的含义的话,似乎比较抽象难懂,所以我觉得给出一个具体的齐次的东西来解释可能会更好一点。

下面我要解释的齐次坐标(homogeneous coordinates)是我所熟悉的计算机视觉和图形学这两个领域中经常要用到的概念,同时,坐标也是一般人都可以理解的东西。

二维空间中的一个点是用二元组(x,y)表示的。我们可以增加一个额外的坐标得到三元组(x,y,1),同时我们声明这是同一个点。这看起来完全无害,因为我们可以很简单地通过增加或者删除最后一个坐标值来在两种表示方式之间来回切换。现在,有一个很重要的问题是:最后一个坐标为什么需要是1?毕竟,另外两个数字没有这样的限制呀。比方说(x,y,2)。在这里,我们要再给出一个定义,即当k非零时,所有形如(kx,ky,k)的三元组都表示同一个点,比如(x,y,1)和(2x,2y,2)就表示同一个点。由此我们就可以引出齐次坐标的定义,即给定一个二维点(x,y),那么形如(kx,ky,k)的所有三元组就都是等价的,它们就是这个点的齐次坐标。对每一个齐次坐标,我们只要把它除以三元组中的第三个数,即可得到原始的二维点坐标(这就是@祝文祥的答案中所说的同比收缩的一个例子)。不过我觉得,从字面上来看,齐次坐标这个叫法还是不那么形象,不过看看和齐次对应的英文单词homogeneous,我们会发现这个词有时还会被翻译成“同质”,表示某一类东西拥有一些相同的性质,这么来看的话,还是挺形象的吧。

需要再次注意的是这里的k是非零的,那么如果k=0会怎样?因为除数不能为0的缘故,所以似乎没有任何二维点是和(x,y,0)对应的。事实上,(x,y,0)就是无穷远处的点。以前,我们用(x,y)是无法描述二维平面上的无穷远点,但当我们引入齐次坐标之后,就可以用(x,y,0)来表示无穷远点了。这就是引入齐次坐标的一个好处。当然了,使用齐次坐标还有很多好处。事实上,没很多好处,我们干嘛要多用一个数字来表示二维点呀,多麻烦你说是吧。

以上关于齐次坐标的内容翻译并修改自《Multiview Geometry in Computer Vision (2nd Edition)》第2页第9行开始的两段。

2. 线性

再来说说“线性”。和“齐次”类似,带“线性”的概念也很多,下面我也会给出一个具体的线性的东西来解释,以防过于抽象。

“线性变换”(Linear Transformation)同样是计算机视觉和图形学中经常用到的东西。通常,我们会用一个矩阵来表示一个线性变换,对于二维空间中的线性变换,我们经常用3x3的矩阵来表示。当给定一个线性变换矩阵之后,我们把它和一个齐次坐标一乘就可以得到经过变换后的齐次坐标了。

那么为什么我们要管这种变换叫线性变换而不是弯性变换呢?这里抛开线性的数学定义不说,线性变换有一个重要的性质,非常形象地表达了这一概念,即保共线性(我记不清是不是叫这个名字了,望指正)。具体地说就是,在线性变换之前处于同一条直线上的3个点,经过线性变换之后必定还处于同一条直线上。换句话说,如果你画了一条直线,这条直线在经过线性变换之后它必定还是一条直线。

所以说,线性变换最喜欢直线了,除了直线以外的东西,比如角,在经过线性变换之后可能就完全不一样了,此外,还有长度、面积、平行等等,线性变换都不喜欢,不保证它们在变换之后还能维持原样。

以上,希望能帮助大家理解这两个概念。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容

  • 这是很早以前已经看过的,最近无意中又把保存的文章翻出来时,想起很多朋友问过矩阵,虽对矩阵似懂非懂,但却很想弄懂它,...
    dechuan阅读 6,083评论 4 57
  • 理解矩阵一:转载自:http://blog.csdn.net/myan/article/details/64751...
    jiandanjinxin阅读 1,535评论 1 15
  • 年少轻狂时,谁曾是谁并肩往前的伙伴? 山重水复之后,又有多少人沿着各自倾斜的轨迹走向既定的归宿? 而我们终会相信,...
    游人友人阅读 224评论 1 1
  • 这是一个古老而又闭塞的小山村,四面环山,就像是四位忠于职守的武将,默默的注视着自己的领地,整个村子位于正中,一条山...
    逸荷阅读 538评论 1 3
  • 宽容不是送上一顶原谅帽那么简单的意见事情,生而为人,应当做到恰当的宽容。马蓉做出这么恶心的事情,王宝强应该宽容她吗...
    一人我上青楼阅读 1,709评论 0 0