[Computational Geometry] Analogy between Graham Scan and KMP

"Graham's scan is the most popular and fundamental method of finding the convex hull of a finite set of points with time complexity O(n log n)."  - Wikipedia

Fig. 1: Graphical illustration of Graham Scan algorithm, taken from CG class slides.

1. Introduction

In this post, I will share my recent ideas of time complexity analysis for Graham scan algorithms that I've learned in CG class, as well as how it relates to the classical KMP algorithm.

As mentioned in the class, the scan process of the Graham scan algorithm can be done in linear time, and the trick in CG class is to construct a suitable linear combination of the size of the two stacks so that the changes in the different branches of the if-else statement are equal. Hence, the number of times the while loop is executed is tactfully converted to the times that A=S.size()+2*T.size() are decremented.

The above method to obtain the time complexity is definitely correct. But the meaning of the constructed A is not very clear. We thus want to explore whether we can find a solution that does not need the tricky variable A  but can intuitively analyze the time complexity purely based on the Graham scan algorithm per se.

2. Identifying the counterpart using analogy

To find some starting points,  we can refer to another algorithm that is very similar to the Graham scan algorithms, i.e., KMP for string matching:

Fig 2: Pseudo-codes for KMP

2.1 Analyzing KMP time complexity

The key variable is q, q is initially 0, by the 9th line we can see that , q is increased by 1 each time, so in the loop from beginning to end, q is added by 1 for at most n times, by the 6th,7th line, q will be decremented by at least 1 in each loop of while.

Since the number of times q is incremented by 1 is at most n,  q is initially zero, and in the end q is non-negative, so q is decremented  for at most n times in the loop, therefore, the while statement is executed at most n times. Note that the number of  times that the while statement is executed is exactly the number of times that the KMP algorithm loop will execute. Thus, the number of times of KMP  loop is no more than n times and is clearly in linear time complexity.

Fig. 3: Basic algorithm for Graham Scan

2.2 The analogy comes in

Based on the analysis of KMP algorithm, we transfer it to Graham scan by analogy:

1) S.size () is analogous to q in KMP;

2) S.pop () is equivalent to q = q-1, analogous to the 6,7th line of KMP;

3) S.push () is equivalent to q = q + 1, analogous to the 8,9th line of KMP;

This naturally leads to the following three notes:

1) For each point, the number of times that it is pushed to S is exactly once.  

This can be justified by referring to the S.push (T.pop ()) statement; all the points will be popped out and pushed to S;  for S,  the points once are popped, will not appear again.

2) In Graham scan, each time while looping, we perform  either s.push (), or s.pop (), so the number of loop executions is the total number of times of S.push () + S.pop ()

3) S.size ()  is greater than or equal to 3 when the loop is ended (since the first, second and last points must be in S).

3. Conclusive remarks

So now it's easy to look at the time complexity of Graham scan:

1) S.push () executes n-2 times (because of the first note above, also note that the first and the second are pushed into S before the loop is executed);

2) S.pop () executes less than or equal to n-3 (due to the third note above);

3) The total number of times S.push () + S.pop () is less than or equal to n-2 + n-3 = 2n-5 times (exactly the same as the conclusion that appears in course-ware).

Therefore, we conclude that the scan process of the Graham scan has linear time complexity.

Above, we analyze how to compute time complexity of Graham scan algorithm. This is done by analogy:  we use the inherent variable S.size() (analogous to q in KMP)  for indicating the Graham scan time complexity.



If you identify any technical errors or confounding stuff, feel free to drop a comment

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,315评论 0 10
  • 面试中有一个经常被问到的问题:“你生命中最失败的事情是什么?” 你会怎么回答呢? 一项工作的失败? 一次创业的失败...
    悟三分阅读 31,198评论 58 374
  • 关于公开课,几份期待几分畏惧,想的到成长,想磨砺自己,想侃侃而谈,想淡定从容,却总事与愿违,课前紧张,思路凌乱,知...
    喜悦妞妞阅读 148评论 0 0
  • 其实标题也可以改为 做事(当然包括学习这件事)开始的时机。 正如人们会基于相同的原因而选择不同的处理方式。对于同一...
    夫礼者阅读 244评论 0 0
  • 没想到17年的最后一个夜晚会在商场中度过,以监工的身份完成今年的最后一项工作,偌大的商场静的舒心,也正好有...
    彼岸丶天明阅读 157评论 0 0