线性回归:工业蒸汽量预测

本次数据集来自于天池新人赛

  • 赛题描述:

火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等
数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。选手利用训练数据训练出模型,预测测试数据的目标变量,排名结果依据预测结果的MSE(mean square error)。
经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。

  • 线性回归

本次数据采用线性回归模型进行预测,首先查看一下数据

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import statsmodels.api as sm

df = pd.read_table('zhengqi_train.txt')
df.head()

查看数据的缺失情况,经确认并没有缺失值

df.isnull().sum() 

本次用的是statsmodels模块,所以需要提取所有的字段。由于字段过多,我构造了一个函数:

lst = []  #构造自变量特征名,方便建模使用
for i in range(38):
    lst.append('V'+str(i))
x_name = '+'.join(lst)
print(x_name)

输出结果是一个字符串V0+V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11+V12+V13+V14+V15+V16+V17+V18+V19+V20+V21+V22+V23+V24+V25+V26+V27+V28+V29+V30+V31+V32+V33+V34+V35+V36+V37
这样就可以方便的创建线性回归模型了。

train, test = train_test_split(df, test_size=0.25, random_state=66) # 拆分训练集和测试集
model = sm.formula.ols('target~'+ x_name, data=train).fit()
model.params # 偏回归系数

模型的检验
通过model.summary()可以得到模型的一些信息(部分截图如下)

  • R-squared:判决系数R平方,用来衡量自变量对因变量解释程度。
  • F-statistic:模型的F统计量,用来检验模型的显著性。
  • P>|t|:每个t统计量对应的概率值p,用来检验回归系数的显著性。一般p值小于0.05,说明此变量是因变量的影响因素。
    线性相关性检验
corr = train.drop('target', axis=1).corrwith(train.target)
corr = corr[np.abs(corr) >= 0.5]

这里只留取了先关系数大于等于0.5的变量,再综合上面的t检验,最终确定下1-v12,v14,v16,v17,v24,v27,v31,v33,v37作为模型的自变量,再根据这些变量建立新的模型

model2 = sm.formula.ols('target~V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11+V12+V14+V16+V17+V24+V27+V31+V33+V37', data=train).fit()
pred = model2.predict(exog=test.ix[:,['V1','V2','V3','V4','V5','V6','V7','V8','V9','V10','V11','V12','V14','V16','V17','V24','V27','V31','V33','V37']])
MSE = np.sum((test.target-pred) ** 2)/test.shape[0]
MSE

比赛是根据MSE评分的,这里我计算得出本次模型的MSE为0.12064232053155005
目测这个结果在排行榜中排到了90多名。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容