近似推断|机器学习推导系列(二十七)

一、推断的动机和困难

  1. 推断的动机

推断问题是在概率图模型中经常遇到的问题,也就是给定观测变量v的情况下求解后验p(h|v),这里的h是隐变量(注意原来我们常用zx来表示隐变量和观测变量,不过在深度学习中我们更倾向于使用hv来表示隐变量和观测变量)。

那么为什么推断问题是重要的呢?也就是说推断的动机是什么呢?推断的动机主要包括以下两个方面:
①推断本身是有意义的。推断问题事实上是一种对原因的追溯,在给定观测的情况下来求解它的原因,因此推断本身是有意义的。
②为参数的学习提供帮助。回想EM算法中,我们期待引入的分布q(z)能近似后验分布p(z|x),然后才能利用求解参数\theta,因此推断问题能够帮助求解参数。

  1. 推断的困难

不幸的是推断问题往往是困难的,在大多数情况下,精确推断往往计算复杂度过高以致于几乎不可能进行,因此我们很多时候需要采用一些近似推断的方法。

举例来说,像下图中的玻尔兹曼机,作为无向图模型其节点之间是相互联系和影响的,难以求解,也就是mutual interaction,而只有对模型进行一些限制,比如受限玻尔兹曼机,才可以有求解的方法,然而这样的限制必定会限制模型的能力。另外对于深度玻尔兹曼机,以下图中三层结构为例,在给定其中两层时另外一层才会条件独立,否则仍然会有复杂度过高的问题。而对于有向图模型,比如sigmoid信念网络,其中存在head-to-head结构,又会造成explain away问题,仅仅在一些特殊情况下可解比如线性高斯模型:

概率图模型

二、推断即优化

在前面的EM算法和变分推断的章节中我们已经感受过了,求解推断问题的过程是引入一个分布q(h|v)并且将log似然转化成ELBO和KL散度的和,目标是让ELBO尽可能地大,于是推断问题就成了一个优化问题。具体的,有数据v\in V,对于log似然:

\mathrm{log\mbox{-}likelihood}:\sum _{v\in V}log\; p(v)

对于log\; p(v),我们有:

log\; p(v)=log\frac{p(v,h)}{p(h|v)}\\ =log\frac{p(v,h)}{q(h|v)}\frac{q(h|v)}{p(h|v)}\\ =log\frac{p(v,h)}{q(h|v)}+log\frac{q(h|v)}{p(h|v)}\\ =\int log\frac{p(v,h)}{q(h|v)}q(h|v)\mathrm{d}h+\int log\frac{q(h|v)}{p(h|v)}q(h|v)\mathrm{d}h\\ =E_{q(h|v)}\left [log\frac{p(v,h)}{q(h|v)}\right ]+KL(q(h|v)||p(h|v))\\ =E_{q(h|v)}\left [log\; p(v,h)-log\; q(h|v)\right ]+KL(q(h|v)||p(h|v))\\ =\underset{ELBO=L(v,h,q)}{\underbrace{E_{q(h|v)}\left [log\; p(v,h)\right ]+H[q]}}+\underset{KL(q||p)}{\underbrace{KL(q(h|v)||p(h|v))}}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,208评论 6 524
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,502评论 3 405
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,496评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,176评论 1 302
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,185评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,630评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,992评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,973评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,510评论 1 325
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,546评论 3 347
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,659评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,250评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,990评论 3 340
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,421评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,569评论 1 277
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,238评论 3 382
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,732评论 2 366

推荐阅读更多精彩内容