python与机器学习:MNIST数据集“手写识别”实例

MNIST数据集

MNIST是一个包含数字0-9的手写体图片数据集,图片已归一化为以手写数字为中心的28*28规格的图片。MNIST由训练集与测试集两个部分组成,各部分规模如下:

  • 训练集:60000个手写体图片及对应标签
  • 测试集:10000个手写体图片及对应标签

DBRHD数据集

DBRHD数据集包含大量的数字0-9的手写体图片,这些图片来源于44位不同的人的手写数字,图片已归一化为以手写数字为中心的32*32规格的图片。DBRHD的训练集与测试集组成如下:

  • 训练集:7494个手写体图片及对应标签,来源于40位手写者
  • 测试集:3498个手写体图片及对应标签,来源于14位手写者


MLP手写识别

MLP(Multilayer preceptron),多层感知机用于识别数据集DBRHD的手写数字。

MPL输出:“one-hot vectors”
  • 一个one-hot向量除了某一位的数字是1以外其余各维度数字都是0。
  • 图片标签将表示成一个只有在第n维度(从0开始)数字为0的10维向量。比如,标签0将表示成[1,0,0,0,0,0,0,0,0,0,0]。即MLP输出层具有10个神经元。


import numpy as np     #导入numpy工具包
from os import listdir #使用listdir模块,用于访问本地文件
from sklearn.neural_network import MLPClassifier 

def img2vector(fileName):    
    retMat = np.zeros([1024],int) #定义返回的矩阵,大小为1*1024
    fr = open(fileName)           #打开包含32*32大小的数字文件 
    lines = fr.readlines()        #读取文件的所有行
    for i in range(32):           #遍历文件所有行
        for j in range(32):       #并将01数字存放在retMat中     
            retMat[i*32+j] = lines[i][j]    
    return retMat

def readDataSet(path):    
    fileList = listdir(path)    #获取文件夹下的所有文件 
    numFiles = len(fileList)    #统计需要读取的文件的数目
    dataSet = np.zeros([numFiles,1024],int) #用于存放所有的数字文件
    hwLabels = np.zeros([numFiles,10])      #用于存放对应的one-hot标签
    for i in range(numFiles):   #遍历所有的文件
        filePath = fileList[i]  #获取文件名称/路径      
        digit = int(filePath.split('_')[0])  #通过文件名获取标签      
        hwLabels[i][digit] = 1.0        #将对应的one-hot标签置1
        dataSet[i] = img2vector(path +'/'+filePath) #读取文件内容   
    return dataSet,hwLabels

#read dataSet
train_dataSet, train_hwLabels = readDataSet('sklearn/digits/trainingDigits')

clf = MLPClassifier(hidden_layer_sizes=(100,),
                    activation='logistic', solver='adam',
                    learning_rate_init = 0.0001, max_iter=2000)
print(clf)
clf.fit(train_dataSet,train_hwLabels)

#read  testing dataSet
dataSet,hwLabels = readDataSet('sklearn/digits/testDigits')
res = clf.predict(dataSet)   #对测试集进行预测
error_num = 0                #统计预测错误的数目
num = len(dataSet)           #测试集的数目
for i in range(num):         #遍历预测结果
    #比较长度为10的数组,返回包含01的数组,0为不同,1为相同
    #若预测结果与真实结果相同,则10个数字全为1,否则不全为1
    if np.sum(res[i] == hwLabels[i]) < 10: 
        error_num += 1                     
print("Total num:",num," Wrong num:", \
      error_num,"  WrongRate:",error_num / float(num))
MLPClassifier(activation='logistic', learning_rate_init=0.0001, max_iter=2000)
MLPClassifier(activation='logistic', hidden_layer_sizes=(200,),
              learning_rate_init=0.0001, max_iter=2000)
Traceback (most recent call last):
  File 
PS E:\coding> python -u "e:\coding\sklearn\minst_mlp.py"
MLPClassifier(activation='logistic', hidden_layer_sizes=(200,),
              learning_rate_init=0.0001, max_iter=2000)
Total num: 946  Wrong num: 40   WrongRate: 0.042283298097251586
PS E:\coding> python -u "e:\coding\sklearn\minst_mlp.py"
MLPClassifier(activation='logistic', hidden_layer_sizes=(400,),
              learning_rate_init=0.0001, max_iter=2000)
Total num: 946  Wrong num: 35   WrongRate: 0.03699788583509514

随着隐藏神经元数目从100到200再到400,判断错误次数从41下降到40,再下降到36。

KNN手写识别

KNN(k-Nearest Neighbor),k近邻分类器,用于识别数据集DBRHD的手写数字。
之后比较KNN的识别效果与多层感知机的识别效果。

  • DBRHD数据集的每个图片是一个由0或1组成的32*32的文本矩阵。
  • KNN的输入为图片矩阵展开的一个1024维的向量。
import numpy as np     #导入numpy工具包
from os import listdir #使用listdir模块,用于访问本地文件
from sklearn import neighbors

def img2vector(fileName):    
    retMat = np.zeros([1024],int) #定义返回的矩阵,大小为1*1024
    fr = open(fileName)           #打开包含32*32大小的数字文件 
    lines = fr.readlines()        #读取文件的所有行
    for i in range(32):           #遍历文件所有行
        for j in range(32):       #并将01数字存放在retMat中     
            retMat[i*32+j] = lines[i][j]    
    return retMat

def readDataSet(path):    
    fileList = listdir(path)    #获取文件夹下的所有文件 
    numFiles = len(fileList)    #统计需要读取的文件的数目
    dataSet = np.zeros([numFiles,1024],int)    #用于存放所有的数字文件
    hwLabels = np.zeros([numFiles])#用于存放对应的标签(与神经网络的不同)
    for i in range(numFiles):      #遍历所有的文件
        filePath = fileList[i]     #获取文件名称/路径   
        digit = int(filePath.split('_')[0])   #通过文件名获取标签     
        hwLabels[i] = digit        #直接存放数字,并非one-hot向量
        dataSet[i] = img2vector(path +'/'+filePath)    #读取文件内容 
    return dataSet,hwLabels

#read dataSet
train_dataSet, train_hwLabels = readDataSet('sklearn/digits/trainingDigits')
knn = neighbors.KNeighborsClassifier(algorithm='kd_tree', n_neighbors=3)
knn.fit(train_dataSet, train_hwLabels)

#read  testing dataSet
dataSet,hwLabels = readDataSet('sklearn/digits/testDigits')

res = knn.predict(dataSet)  #对测试集进行预测
error_num = np.sum(res != hwLabels) #统计分类错误的数目
num = len(dataSet)          #测试集的数目
print("Total num:",num," Wrong num:", \
      error_num,"  WrongRate:",error_num / float(num))
PS E:\coding> python -u "e:\coding\sklearn\minst_knn.py"
Total num: 946  Wrong num: 12   WrongRate: 0.012684989429175475
PS E:\coding> python -u "e:\coding\sklearn\minst_knn.py"
Total num: 946  Wrong num: 13   WrongRate: 0.013742071881606765
PS E:\coding> python -u "e:\coding\sklearn\minst_knn.py"
Total num: 946  Wrong num: 18   WrongRate: 0.019027484143763214
PS E:\coding> python -u "e:\coding\sklearn\minst_knn.py"
Total num: 946  Wrong num: 22   WrongRate: 0.023255813953488372

在K=3的时候效果最好,之后增加K错误率反而继续上升。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容