大数据学习之路(持续更新中...)

前言

在学习大数据之前,先要了解他解决了什么问题,能给我们带来什么价值。一方面,以前IT行业发展没有那么快,系统的应用也不完善,数据库足够支撑业务系统。但是随着行业的发展,系统运行的时间越来越长,搜集到的数据也越来越多,传统的数据库已经不能支撑全量数据的存储工作;另一方面,数据越来越多,单机的计算已经成为瓶颈。因此,基于分布式的大数据系统崭露头角。那么大数据系统里面都有什么东西呢?可以参考下面的图

大数据学习路线加q779229548

在存储上,hdfs的分布式存储可以任意水平扩展,可以解决数据存储的难题。在计算上,从最初的MapReduce,把任务水平拆分,多台机器并行计算,再汇总结果;到基于Spark的内存计算,改造Mapreduce每次数据落盘以及编程方式的痛点。

有了存储和计算框架,周边就衍生出了很多管理、缓存相关的技术,比如:

yarn解决多租户资源调度的难题,

flume解决数据传输的难题,

sqoop解决分布式存储数据与传统DB数据之间的转换,

oozie解决了大数据计算任务的调度,

kafka提供了发布订阅机制的消息队列,

zookeeper可以帮助用户完成主备的选举,

hive在hdfs的基础上提供了数仓的功能,

hbase则基于hdfs实现列式数据库....

大数据学习路线加q779229548

上面都是hadoop生态的,由于hadoop中计算模型普遍是mapreduce,但是它的编程风格和计算机制让很多人使用不便。因此后来spark逐渐代替了mapr成为主流的计算框架。Spark也有它自己的生态,但是由于hadoop更多更早的被应用到企业,所以spark也可以无缝的集成hadoop生态中的产品。spark更多只是扮演一个计算的框架,在这个框架上,提供了基本的计算模块core,基于sql的计算引擎spark sql,对接实时数据的流式计算spark streaming,算法相关的mlib以及图计算相关的graphx。

这些框架都在这个大数据生态中扮演了自己重要的角色,他们协同工作就可以帮助我们解决很多难题。由于我也是接触不久,所以就按照自己学习和工作涉及的内容,在下面按照各个章节进行介绍,后续也会持续的更新。希望对所有对大数据感兴趣的

hdfs

hdfs是大数据系统的基础,它提供了基本的存储功能,由于底层数据的分布式存储,上层任务也可以利用数据的本地性进行分布式计算。hdfs思想上很简单,就是namenode负责数据存储位置的记录,datanode负责数据的存储。使用者client会先访问namenode询问数据存在哪,然后去datanode存储;写流程也基本类似,会先在namenode上询问写到哪,然后把数据存储到对应的datanode上。所以namenode作为整个系统的灵魂,一旦它挂掉了,整个系统也就无法使用了。在运维中,针对namenode的高可用变得十分关键。

mapreduce

hive

hive基于hdfs构建了数据仓库系统,它以hdfs作为存储,依赖于数据库(嵌入式的数据库derby或者独立的数据mysql或oracle)存储表schema信息,并完成基于sql自动解析创建mapreduce任务(由于mapreduce计算效率比较差,目前官方推荐的是底层计算模型采用tez或者spark)。所以hive可以理解为:hdfs原始存储+DB Schema信息存储+SQL解析引擎+底层计算框架组成的数据仓库。

spark

spark是现在大数据中应用最多的计算模型,它与java8的stream编程有相同的风格。封装了很多的计算方法和模型,以延迟执行的方式,在真正需要执行的时候才进行运算。既可以有效的做计算过程的容错,也可以改善我们的编程模型。

oozie

oozie提供了大数据场景下各种任务的调度,比如shell脚本、spark任务、mapreduce任务、sqoop任务、hive查询以及普通的java程序等等。它的编译是生态圈里面最复杂的,由于以来的各个版本不同,需要指定特定的版本,因此没有成型的一键部署包。

sqoop

sqoop支持基于sql或者表名把数据库中的数据存储到分布式环境中,数据库支持oracle\mysql等等,分布式环境可以是hdfs,hive,hbase等等,数据的导入时双向的,比如你可以把oracle中的数据读取存储到hdfs,也可以把hdfs的数据导入到oracle.

hbase

HBase是基于Hdfs之上的列式数据库,基于文件分割以及rowkey的顺序存储,能快速索引查询数据。我这边是在推荐系统中,作为推荐结果存储引擎,不过由于内容比较碎片化,Hbase写入时间比较随意,因此总会出现大量超时现象,还在持续优化中。

yarn

在企业中,大数据的基础平台往往是多个用户共用的,那么如何管理资源的分配,就需要yarn来处理了。Yarn默认提供了三种资源分配的策略:

FIFO:先进先出,即按照用户提交任务的时间分配资源

Capacity:按照队列设置队列的大小

Fair Share:也是基于队列,只不过资源的粒度更小。

常见可以用于分配的资源可以是节点的数量,内存的大小,也可以是CPU核数。

zookeeper

从名字来说他是动物园的管理员,实际上他是各个组件的协调者。可以实现类似主从选举、分布式事务、负载均衡等多种功能,比如HDFS HA方案、HBase的Metastore、Kafka里面的offset维护等等,由此可以见,zookeeper的重要性。

不过激发我学习zookeeper的主要原因还是因为它里面涉及了很多分布式协议的东西,从而能更好的理解分布式中的一些概念。所以,就跟着我一起深入浅出的学习吧!

主要参考:官方文档 《从Paxos到zookeeper分布式一致性原理与实践》

最后

上面是我学习hadoop和spark的分享,希望有兴趣学习大数据的朋友可以通过我之前的学习路线获得一些思考和借鉴,如果有任何疑问或者需要学习方法和路线的朋友可以关注博主的简书,私信我即可

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容

  • Zookeeper用于集群主备切换。 YARN让集群具备更好的扩展性。 Spark没有存储能力。 Spark的Ma...
    Yobhel阅读 7,242评论 0 34
  • 大数据技术框架 1. 简介 2. Hadoop框架2.1. Hadoop-MapReduce2.1.1. 简介:2...
    sunTengSt阅读 12,002评论 1 78
  • 这个世界上,等着看你笑话的人往往比关心你的人多的多。你出事了,最好不要与人分享心情,大多数假闺蜜都是“哎呀,抱抱你...
    粉色滴泪鱼阅读 158评论 0 1
  • 今天周天,在家陪孩子呢 感恩木子学习认真,一项一项的作业能拿到我面前,让我检查并且签字,还有上周在学校的试卷作业也...
    十八菩提子阅读 179评论 0 2
  • 为什么大家选择肯德基? 有这样一个疑问,可能有人会认为没有意义,但是现在的我认为许多很有价值的内容就在这些我自认为...
    神域熊猫阅读 294评论 0 0