[Machine Learning From Scratch]-unsupervised_learning-apriori

  
from __future__ import division, print_function
import numpy as np
import itertools


class Rule():
    def __init__(self, antecedent, concequent, confidence, support):
        self.antecedent = antecedent
        self.concequent = concequent
        self.confidence = confidence
        self.support = support


class Apriori():
    """A method for determining frequent itemsets in a transactional database and
    also for generating rules for those itemsets. 
    Parameters:
    -----------
    min_sup: float
        The minimum fraction of transactions an itemets needs to
        occur in to be deemed frequent
    min_conf: float:
        The minimum fraction of times the antecedent needs to imply
        the concequent to justify rule
    """
    def __init__(self, min_sup=0.3, min_conf=0.81):

        self.min_sup = min_sup
        self.min_conf = min_conf
        self.freq_itemsets = None       # List of freqeuent itemsets
        self.transactions = None        # List of transactions

    def _calculate_support(self, itemset):
        count = 0
        for transaction in self.transactions:
            if self._transaction_contains_items(transaction, itemset):
                count += 1
        support = count / len(self.transactions)
        return support


    def _get_frequent_itemsets(self, candidates):
        """ Prunes the candidates that are not frequent => returns list with 
        only frequent itemsets """
        frequent = []
        # Find frequent items
        for itemset in candidates:
            support = self._calculate_support(itemset)
            if support >= self.min_sup:
                frequent.append(itemset)
        return frequent


    def _has_infrequent_itemsets(self, candidate):
        """ True or false depending on the candidate has any
        subset with size k - 1 that is not in the frequent itemset """
        k = len(candidate)
        # Find all combinations of size k-1 in candidate
        # E.g [1,2,3] => [[1,2],[1,3],[2,3]]
        subsets = list(itertools.combinations(candidate, k - 1))
        for t in subsets:
            # t - is tuple. If size == 1 get the element
            subset = list(t) if len(t) > 1 else t[0]
            if not subset in self.freq_itemsets[-1]:
                return True
        return False


    def _generate_candidates(self, freq_itemset):
        """ Joins the elements in the frequent itemset and prunes
        resulting sets if they contain subsets that have been determined
        to be infrequent. """
        candidates = []
        for itemset1 in freq_itemset:
            for itemset2 in freq_itemset:
                # Valid if every element but the last are the same
                # and the last element in itemset1 is smaller than the last
                # in itemset2
                valid = False
                single_item = isinstance(itemset1, int)
                if single_item and itemset1 < itemset2:
                    valid = True
                elif not single_item and np.array_equal(itemset1[:-1], itemset2[:-1]) and itemset1[-1] < itemset2[-1]:
                    valid = True

                if valid:
                    # JOIN: Add the last element in itemset2 to itemset1 to
                    # create a new candidate
                    if single_item:
                        candidate = [itemset1, itemset2]
                    else:
                        candidate = itemset1 + [itemset2[-1]]
                    # PRUNE: Check if any subset of candidate have been determined
                    # to be infrequent
                    infrequent = self._has_infrequent_itemsets(candidate)
                    if not infrequent:
                        candidates.append(candidate)
        return candidates


    def _transaction_contains_items(self, transaction, items):
        """ True or false depending on each item in the itemset is
        in the transaction """
        # If items is in fact only one item
        if isinstance(items, int):
            return items in transaction
        # Iterate through list of items and make sure that
        # all items are in the transaction
        for item in items:
            if not item in transaction:
                return False
        return True

    def find_frequent_itemsets(self, transactions):
        """ Returns the set of frequent itemsets in the list of transactions """
        self.transactions = transactions
        # Get all unique items in the transactions
        unique_items = set(item for transaction in self.transactions for item in transaction)
        # Get the frequent items
        self.freq_itemsets = [self._get_frequent_itemsets(unique_items)]
        while(True):
            # Generate new candidates from last added frequent itemsets
            candidates = self._generate_candidates(self.freq_itemsets[-1])
            # Get the frequent itemsets among those candidates
            frequent_itemsets = self._get_frequent_itemsets(candidates)

            # If there are no frequent itemsets we're done
            if not frequent_itemsets:
                break

            # Add them to the total list of frequent itemsets and start over
            self.freq_itemsets.append(frequent_itemsets)

        # Flatten the array and return every frequent itemset
        frequent_itemsets = [
            itemset for sublist in self.freq_itemsets for itemset in sublist]
        return frequent_itemsets


    def _rules_from_itemset(self, initial_itemset, itemset):
        """ Recursive function which returns the rules where confidence >= min_confidence
        Starts with large itemset and recursively explores rules for subsets """
        rules = []
        k = len(itemset)
        # Get all combinations of sub-itemsets of size k - 1 from itemset
        # E.g [1,2,3] => [[1,2],[1,3],[2,3]]
        subsets = list(itertools.combinations(itemset, k - 1))
        support = self._calculate_support(initial_itemset)
        for antecedent in subsets:
            # itertools.combinations returns tuples => convert to list
            antecedent = list(antecedent)
            antecedent_support = self._calculate_support(antecedent)
            # Calculate the confidence as sup(A and B) / sup(B), if antecedent
            # is B in an itemset of A and B
            confidence = float("{0:.2f}".format(support / antecedent_support))
            if confidence >= self.min_conf:
                # The concequent is the initial_itemset except for antecedent
                concequent = [itemset for itemset in initial_itemset if not itemset in antecedent]
                # If single item => get item
                if len(antecedent) == 1:
                    antecedent = antecedent[0]
                if len(concequent) == 1:
                    concequent = concequent[0]
                # Create new rule
                rule = Rule(
                        antecedent=antecedent,
                        concequent=concequent,
                        confidence=confidence,
                        support=support)
                rules.append(rule)
                    
                # If there are subsets that could result in rules
                # recursively add rules from subsets
                if k - 1 > 1:
                    rules += self._rules_from_itemset(initial_itemset, antecedent)
        return rules

    def generate_rules(self, transactions):
        self.transactions = transactions
        frequent_itemsets = self.find_frequent_itemsets(transactions)
        # Only consider itemsets of size >= 2 items
        frequent_itemsets = [itemset for itemset in frequent_itemsets if not isinstance(
                itemset, int)]
        rules = []
        for itemset in frequent_itemsets:
            rules += self._rules_from_itemset(itemset, itemset)
        # Remove empty values
        return rules
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容