限流算法有四种常见算法
计数器算法(固定窗口)
滑动窗口
漏桶算法
令牌桶算法
计数器算法(固定窗口)
计数器算法是使用计数器在周期内累加访问次数,当达到设定的限流值时,触发限流策略。下一个
周期开始时,进行清零,重新计数。
此算法在单机还是分布式环境下实现都非常简单,使用redis的incr原子自增性和线程安全即可轻松
实现
这个算法通常用于QPS限流和统计总访问量,对于秒级以上的时间周期来说,会存在一个非常严重
的问题,那就是临界问题,如下图:
假设1min内服务器的负载能力为100,因此一个周期的访问量限制在100,然而在第一个周期的最
后5秒和下一个周期的开始5秒时间段内,分别涌入100的访问量,虽然没有超过每个周期的限制
量,但是整体上10秒内已达到200的访问量,已远远超过服务器的负载能力,由此可见,计数器算
法方式限流对于周期比较长的限流,存在很大的弊端。
滑动窗口算法
滑动窗口算法是将时间周期分为N个小周期,分别记录每个小周期内访问次数,并且根据时间滑动
删除过期的小周期。
如下图,假设时间周期为1min,将1min再分为2个小周期,统计每个小周期的访问数量,则可以看
到,第一个时间周期内,访问数量为75,第二个时间周期内,访问数量为100,超过100的访问则
被限流掉了
由此可见,当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精
确。
此算法可以很好的解决固定窗口算法的临界问题。
漏桶算法
漏桶算法是访问请求到达时直接放入漏桶,如当前容量已达到上限(限流值),则进行丢弃(触发
限流策略)。漏桶以固定的速率进行释放访问请求(即请求通过),直到漏桶为空。
令牌桶算法
令牌桶算法是程序以r(r=时间周期/限流值)的速度向令牌桶中增加令牌,直到令牌桶满,请求到
达时向令牌桶请求令牌,如获取到令牌则通过请求,否则触发限流策略