Tornado异步笔记(一)--- 异步任务

高性能服务器Tornado

Python的web框架名目繁多,各有千秋。正如光荣属于希腊,伟大属于罗马。Python的优雅结合WSGI的设计,让web框架接口实现千秋一统。WSGI 把应用(Application)和服务器(Server)结合起来。Django 和 Flask 都可以结合 gunicon 搭建部署应用。

与 django 和 flask 不一样,tornado 既可以是 wsgi 应用,也可以是 wsgi 服务。当然,选择tornado更多的考量源于其单进程单线程异步IO的网络模式。高性能往往吸引人,可是有不少朋友使用之后会提出疑问,tornado号称高性能,实际使用的时候却怎么感受不到呢?

实际上,高性能源于Tornado基于Epoll(unix为kqueue)的异步网络IO。因为tornado的单线程机制,一不小心就容易写出阻塞服务(block)的代码。不但没有性能提高,反而会让性能急剧下降。因此,探索tornado的异步使用方式很有必要。

Tornado 异步使用方式

简而言之,Tornado的异步包括两个方面,异步服务端异步客户端。无论服务端和客户端,具体的异步模型又可以分为回调(callback)和协程(coroutine)。具体应用场景,也没有很明确的界限。往往一个请求服务里还包含对别的服务的客户端异步请求。

服务端异步方式

服务端异步,可以理解为一个tornado请求之内,需要做一个耗时的任务。直接写在业务逻辑里可能会block整个服务。因此可以把这个任务放到异步处理,实现异步的方式就有两种,一种是yield挂起函数,另外一种就是使用类线程池的方式。请看一个同步例子:


class SyncHandler(tornado.web.RequestHandler):

    def get(self, *args, **kwargs):
        # 耗时的代码
        os.system("ping -c 2 www.google.com")
        self.finish('It works')

使用ab测试一下:

ab -c 5 -n 5 http://127.0.0.1:5000/sync

Server Software:        TornadoServer/4.3
Server Hostname:        127.0.0.1
Server Port:            5000

Document Path:          /sync
Document Length:        5 bytes

Concurrency Level:      5
Time taken for tests:   5.076 seconds
Complete requests:      5
Failed requests:        0
Total transferred:      985 bytes
HTML transferred:       25 bytes
Requests per second:    0.99 [#/sec] (mean)
Time per request:       5076.015 [ms] (mean)
Time per request:       1015.203 [ms] (mean, across all concurrent requests)
Transfer rate:          0.19 [Kbytes/sec] received

qps 仅有可怜的 0.99,姑且当成每秒处理一个请求吧。

下面祭出异步大法:

class AsyncHandler(tornado.web.RequestHandler):
    @tornado.web.asynchronous
    @tornado.gen.coroutine
    def get(self, *args, **kwargs):

        tornado.ioloop.IOLoop.instance().add_timeout(1, callback=functools.partial(self.ping, 'www.google.com'))

        # do something others

        self.finish('It works')

    @tornado.gen.coroutine
    def ping(self, url):
        os.system("ping -c 2 {}".format(url))
        return 'after'

尽管在执行异步任务的时候选择了timeout 1秒,主线程的返回还是很快的。ab压测如下:

Document Path:          /async
Document Length:        5 bytes

Concurrency Level:      5
Time taken for tests:   0.009 seconds
Complete requests:      5
Failed requests:        0
Total transferred:      985 bytes
HTML transferred:       25 bytes
Requests per second:    556.92 [#/sec] (mean)
Time per request:       8.978 [ms] (mean)
Time per request:       1.796 [ms] (mean, across all concurrent requests)
Transfer rate:          107.14 [Kbytes/sec] received

上述的使用方式,通过tornado的IO循环,把可以把耗时的任务放到后台异步计算,请求可以接着做别的计算。可是,经常有一些耗时的任务完成之后,我们需要其计算的结果。此时这种方式就不行了。车道山前必有路,只需要切换一异步方式即可。下面使用协程来改写:

class AsyncTaskHandler(tornado.web.RequestHandler):
    @tornado.web.asynchronous
    @tornado.gen.coroutine
    def get(self, *args, **kwargs):
        # yield 结果
        response = yield tornado.gen.Task(self.ping, ' www.google.com')
        print 'response', response
        self.finish('hello')

    @tornado.gen.coroutine
    def ping(self, url):
        os.system("ping -c 2 {}".format(url))
        return 'after'

可以看到异步在处理,而结果值也被返回了。


Server Software:        TornadoServer/4.3
Server Hostname:        127.0.0.1
Server Port:            5000

Document Path:          /async/task
Document Length:        5 bytes

Concurrency Level:      5
Time taken for tests:   0.049 seconds
Complete requests:      5
Failed requests:        0
Total transferred:      985 bytes
HTML transferred:       25 bytes
Requests per second:    101.39 [#/sec] (mean)
Time per request:       49.314 [ms] (mean)
Time per request:       9.863 [ms] (mean, across all concurrent requests)
Transfer rate:          19.51 [Kbytes/sec] received

qps提升还是很明显的。有时候这种协程处理,未必就比同步快。在并发量很小的情况下,IO本身拉开的差距并不大。甚至协程和同步性能差不多。例如你跟博尔特跑100米肯定输给他,可是如果跟他跑2米,鹿死谁手还未定呢。

yield挂起函数协程,尽管没有block主线程,因为需要处理返回值,挂起到响应执行还是有时间等待,相对于单个请求而言。另外一种使用异步和协程的方式就是在主线程之外,使用线程池,线程池依赖于futures。Python2需要额外安装。

下面使用线程池的方式修改为异步处理:

from concurrent.futures import ThreadPoolExecutor

class FutureHandler(tornado.web.RequestHandler):
    executor = ThreadPoolExecutor(10)

    @tornado.web.asynchronous
    @tornado.gen.coroutine
    def get(self, *args, **kwargs):

        url = 'www.google.com'
        tornado.ioloop.IOLoop.instance().add_callback(functools.partial(self.ping, url))
        self.finish('It works')

    @tornado.concurrent.run_on_executor
    def ping(self, url):
        os.system("ping -c 2 {}".format(url))

再运行ab测试:

Document Path:          /future
Document Length:        5 bytes

Concurrency Level:      5
Time taken for tests:   0.003 seconds
Complete requests:      5
Failed requests:        0
Total transferred:      995 bytes
HTML transferred:       25 bytes
Requests per second:    1912.78 [#/sec] (mean)
Time per request:       2.614 [ms] (mean)
Time per request:       0.523 [ms] (mean, across all concurrent requests)
Transfer rate:          371.72 [Kbytes/sec] received

qps瞬间达到了1912.78。同时,可以看到服务器的log还在不停的输出ping的结果。
想要返回值也很容易。再切换一下使用方式接口。使用tornado的gen模块下的with_timeout功能(这个功能必须在tornado>3.2的版本)。

class Executor(ThreadPoolExecutor):
    _instance = None

    def __new__(cls, *args, **kwargs):
        if not getattr(cls, '_instance', None):
            cls._instance = ThreadPoolExecutor(max_workers=10)
        return cls._instance


class FutureResponseHandler(tornado.web.RequestHandler):
    executor = Executor()

    @tornado.web.asynchronous
    @tornado.gen.coroutine
    def get(self, *args, **kwargs):

        future = Executor().submit(self.ping, 'www.google.com')

        response = yield tornado.gen.with_timeout(datetime.timedelta(10), future,
                                                  quiet_exceptions=tornado.gen.TimeoutError)

        if response:
            print 'response', response.result()

    @tornado.concurrent.run_on_executor
    def ping(self, url):
        os.system("ping -c 1 {}".format(url))
        return 'after'

线程池的方式也可以通过使用tornado的yield把函数挂起,实现了协程处理。可以得出耗时任务的result,同时不会block住主线程。

Concurrency Level:      5
Time taken for tests:   0.043 seconds
Complete requests:      5
Failed requests:        0
Total transferred:      960 bytes
HTML transferred:       0 bytes
Requests per second:    116.38 [#/sec] (mean)
Time per request:       42.961 [ms] (mean)
Time per request:       8.592 [ms] (mean, across all concurrent requests)
Transfer rate:          21.82 [Kbytes/sec] received

qps为116,使用yield协程的方式,仅为非reponse的十分之一左右。看起来性能损失了很多,主要原因这个协程返回结果需要等执行完毕任务。

好比打鱼,前一种方式是撒网,然后就完事,不闻不问,时间当然快,后一种方式则撒网之后,还得收网,等待收网也是一段时间。当然,相比同步的方式还是快了千百倍,毕竟撒网还是比一只只钓比较快。

具体使用何种方式,更多的依赖业务,不需要返回值的往往需要处理callback,回调太多容易晕菜,当然如果需要很多回调嵌套,首先优化的应该是业务或产品逻辑。yield的方式很优雅,写法可以异步逻辑同步写,爽是爽了,当然也会损失一定的性能。

异步多样化

Tornado异步服务的处理大抵如此。现在异步处理的框架和库也很多,借助redis或者celery等,也可以把tonrado中一些业务异步化,放到后台执行。

此外,Tornado还有客户端异步功能。该特性主要是在于 AsyncHTTPClient的使用。此时的应用场景往往是tornado服务内,需要针对另外的IO进行请求和处理。顺便提及,上述的例子中,调用ping其实也算是一种服务内的IO处理。接下来,将会探索一下AsyncHTTPClient的使用,尤其是使用AsyncHTTPClient上传文件与转发请求。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容