R绘图基础指南 | 3. 散点图(一)

scatter.jpg

3. 散点图

[TOC]

22

散点图通常用于刻画两个连续型变量之间的关系。绘制散点图时,数据集中的每一个观测值都由每个点表示。

3.1 绘制基本散点图

library(gcookbook) 
library(ggplot2)
# 列出我们用到的列
head(heightweight[, c("ageYear", "heightIn")])
> head(heightweight[, c("ageYear", "heightIn")])
  ageYear heightIn
1   11.92     56.3
2   12.92     62.3
3   12.75     63.3
4   13.42     59.0
5   15.92     62.5
6   14.25     62.5
ggplot(heightweight, aes(x=ageYear, y=heightIn)) + geom_point()
unnamed-chunk-11
# shape参数设置点型 size设置点的大小
ggplot(heightweight, aes(x=ageYear, y=heightIn)) + 
  geom_point(shape=21)
ggplot(heightweight, aes(x=ageYear, y=heightIn)) + 
  geom_point(size=1.5)
image-20210816225649979

3.2 使用点形和颜色属性进行分组

head(heightweight[, c("sex", "ageYear", "heightIn")])
> head(heightweight[, c("sex", "ageYear", "heightIn")])
  sex ageYear heightIn
1   f   11.92     56.3
2   f   12.92     62.3
3   f   12.75     63.3
4   f   13.42     59.0
5   f   15.92     62.5
6   f   14.25     62.5
ggplot(heightweight, aes(x=ageYear, y=heightIn, colour=sex)) + 
  geom_point()
ggplot(heightweight, aes(x=ageYear, y=heightIn, shape=sex)) + 
  geom_point()
unnamed-chunk-14
unnamed-chunk-15
# scale_shape_manual()使用其它点形状
#scale_colour_brewer()使用其它颜色
ggplot(heightweight, aes(x=ageYear, y=heightIn, shape=sex, colour=sex)) +
  geom_point() +
  scale_shape_manual(values=c(1,2)) +
  scale_colour_brewer(palette="Set1")
unnamed-chunk-17

3.3 使用不同于默认设置的点形

# 使用点形和填充色属性分别表示不同变量
hw <- heightweight
# 分组 Categorize into <100 and >=100 groups
hw$weightGroup <- cut(hw$weightLb, breaks=c(-Inf, 100, Inf),
                      labels=c("< 100", ">= 100"))

# 使用具有颜色和填充色的点形及对应于空值(NA)和填充色的颜色
ggplot(hw, aes(x=ageYear, y=heightIn, shape=sex, fill=weightGroup)) +
  geom_point(size=2.5) +
  scale_shape_manual(values=c(21, 24)) +
  scale_fill_manual(values=c(NA, "black"),
                    guide=guide_legend(override.aes=list(shape=21)))

unnamed-chunk-33

3.4 将连续型变量映射到点的颜色或大小属性上

ggplot(heightweight, aes(x=ageYear, y=heightIn, colour=weightLb)) + 
  geom_point()

ggplot(heightweight, aes(x=ageYear, y=heightIn, size=weightLb)) + 
  geom_point()
image-20210817114855294
# 默认点的大小范围为1-6mm
# scale_size_continuous(range=c(2, 5))修改点的大小范围
# 将色阶设定为由黑至白
ggplot(heightweight, aes(x=weightLb, y=heightIn, fill=ageYear)) +
  geom_point(shape=21, size=2.5) +
  scale_fill_gradient(low="black", high="white")

# 使用 guide_legend() 函数以离散的图例代替色阶
ggplot(heightweight, aes(x=weightLb, y=heightIn, fill=ageYear)) +
  geom_point(shape=21, size=2.5) +
  scale_fill_gradient(low="black", high="white", breaks=12:17,
                      guide=guide_legend())
image-20210817165620820
# 调用scale_size_area()函数使数据点的面积正比于变量值。
ggplot(heightweight, aes(x=ageYear, y=heightIn, size=weightLb, colour=sex)) +
  geom_point(alpha=.5) +
  scale_size_area() +   
  scale_colour_brewer(palette="Set1")
unnamed-chunk-45

3.5 处理图形重叠

方法:

  • 使用半透明的点
  • 将数据分箱(bin),并用矩形表示
  • 将数据分箱(bin),并用六边形表示
  • 使用箱线图
sp <- ggplot(diamonds, aes(x=carat, y=price))
sp + geom_point()
# 透明度
sp + geom_point(alpha=.1)
sp + geom_point(alpha=.01)

# stat_bin2d()函数默认分别在x轴和y轴方向上将数据分割为30各组
sp + stat_bin2d()

# bin=50设置箱数,limits参数设定图例范围
sp + stat_bin2d(bins=50) +
  scale_fill_gradient(low="lightblue", high="red", limits=c(0, 6000))
image-20210817173245460
# stat_binhex()函数使用六边形分箱
library(hexbin)
sp + stat_binhex() +
  scale_fill_gradient(low="lightblue", high="red",
                      limits=c(0, 8000))

sp + stat_binhex() +
  scale_fill_gradient(low="lightblue", high="red",
                      breaks=c(0, 250, 500, 1000, 2000, 4000, 6000),
                      limits=c(0, 6000))
image-20210817174431437
sp1 <- ggplot(ChickWeight, aes(x=Time, y=weight))

sp1 + geom_point()
# 调用position_jitter()函数给数据点增加随机扰动,通过width,height参数调节
sp1 + geom_point(position="jitter")
# 也可以调用 geom_jitter()
sp1 + geom_point(position=position_jitter(width=.5, height=0))
image-20210817175225507
# 箱线图
sp1 + geom_boxplot(aes(group=Time))
unnamed-chunk-511

参考书籍

  • R Graphics Cookbook, 2nd edition.
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容