Lagrange duality拉格朗日对偶性

Welcome To My Blog
在约束最优化问题(Constrained Optimization)中,常常利用拉格朗日对偶性(Lagrange duality)将原始问题转换为对偶问题,通过求解对偶问题而得到原始问题的解,该方法可用在最大熵模型(Maximum Entropy)和支持向量机(Support Vector Machine).

约束最优化问题

标准形式:

1.png

f(x),c(x),h(x)是定义在R^n上的连续可微函数,c(x)为不等式约束(inequality constraints),h(x)为等式约束(equality constraints).
几个重要定义:
可行点(feasible point):满足所有约束条件的x
可行域Ω(feasible set):所有可行点组成的集合
2.png

激活集A(x): 可行域中使得不等式约束取等的点以及满足等式约束的那些点
LICQ条件:对于激活集A(x),如果激活集中的点对应的约束的梯度向量线性无关,
3.png

那么称LICQ(linear independence constraint qualification)条件成立
这个条件说明了各个取等的约束都是独立的,不能被消掉,比如说其中两个等式约束为:
2x+3y=10
4x+6y=20
这两个等式实质上是一个等式,对应梯度向量分别为(2,3)t,(4,6)t,可能发现这两个向量线性相关

拉格朗日对偶

原始问题

刚才已经讨论过了,下图就被称为约束最优化问题的原始问题

1.png

拉格朗日在哪里?下面引进广义拉格朗日函数(generalized Lagrange function)
4.png

这里,x=(x1,x2,...xn)^t∈R,αi,βj是拉格朗日乘子,αi≥0.考虑x的函数:

5.png

下标P表示原始问题
假设给定某个x.如果x违反原始问题的约束条件,即存在某个i使得ci(w)>0或者存在某个j使得hj(x)≠0,那么有:
6.png

因为若某个i使约束ci(x)>0,则可令αi→+∞,若某个j使约束hj(x)≠0,则可令βj是βj*hj(x)→+∞
相反地,如果x满足等式与不等式约束条件,则有θp(x)=f(x),因此有
7.png

此时考虑极小化问题
8.png

这是与原始问题等价的,即它们有相同的解.
下图称为广义拉格朗日函数的极小极大问题,
9.png

这样一来就把原始问题表示为广义拉格朗日函数的极小极大问题
定义原始问题的最优值p*
10.png

p*称为原始问题的值

对偶问题

定义:

11.png

再考虑极大化θ,如下图
12.png

上面两个式子合起来写就是,下式称为拉格朗日函数的极大极小问题
13.png

可以将拉格朗日函数的极大极小问题表示为约束最优化问题:
14.png

称为原始问题的对偶问题.定义对偶问题的最优值
15.png

称为对偶问题的值

原始问题与对偶问题的关系

定理1:若原始问题和对偶问题都有最优值,则

16.png

证明:容易知道,对任意的α,β,x,有:
17.png


18.png

由于原始问题和对偶问题均有最优值,所以
19.png


16.png

推论1:设x*和α*,β*分别是原始问题和对偶问题的可行解,并且d=p,则x*和α*,β*分别是原始问题和对偶问题的最优解.

在某些条件下,原始问题和对偶问题的最优值相等,d*=p*.这时可以用解对偶问题替代解原始问题.
定理2:考虑之前的原始问题和对偶问题,假设函数f(x)和ci(x)是凸函数,hj(x)是仿射函数;并且假设不等式约束ci(x)是严格可行的,即存在x,对所有i有ci(x)<0,则存在x*,α*,β*,使x*是原始问题的解,α*,β*是对偶问题的解,并且p*=d*=L(x*,α*,β*)

定理3 考虑之前的原始问题和对偶问题,假设函数f(x)和ci(x)是凸函数,hj(x)是仿射函数;并且假设不等式约束ci(x)是严格可行的,那么x*,α*,β*分别是原始问题和对偶问题的最优解的充分必要条件是x*,α*,β*满足KKT条件(Karush-Kuhn-Tucker)
KKT条件:

20.png

特别地,
21.png

称为KKT的对偶互补条件.由此条件可知:若αi*>0,则ci(x*)=0.或者说,约束优化问题的解,要么αi*=0,要么x是激活集中的点,也就是满足ci(x*)=0的点
参考:李航,统计学习方法

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容