[Machine Learning From Scratch]-unsupervised_learning-generative_adversarial_network

from __future__ import print_function, division
from sklearn import datasets
import math
import matplotlib.pyplot as plt
import numpy as np
import progressbar

from sklearn.datasets import fetch_mldata

from mlfromscratch.deep_learning.optimizers import Adam
from mlfromscratch.deep_learning.loss_functions import CrossEntropy
from mlfromscratch.deep_learning.layers import Dense, Dropout, Flatten, Activation, Reshape, BatchNormalization
from mlfromscratch.deep_learning import NeuralNetwork


class GAN():
    """A Generative Adversarial Network with deep fully-connected neural nets as
    Generator and Discriminator.
    Training Data: MNIST Handwritten Digits (28x28 images)
    """
    def __init__(self):
        self.img_rows = 28 
        self.img_cols = 28
        self.img_dim = self.img_rows * self.img_cols
        self.latent_dim = 100

        optimizer = Adam(learning_rate=0.0002, b1=0.5)
        loss_function = CrossEntropy

        # Build the discriminator
        self.discriminator = self.build_discriminator(optimizer, loss_function)

        # Build the generator
        self.generator = self.build_generator(optimizer, loss_function)

        # Build the combined model
        self.combined = NeuralNetwork(optimizer=optimizer, loss=loss_function)
        self.combined.layers.extend(self.generator.layers)
        self.combined.layers.extend(self.discriminator.layers)

        print ()
        self.generator.summary(name="Generator")
        self.discriminator.summary(name="Discriminator")

    def build_generator(self, optimizer, loss_function):
        
        model = NeuralNetwork(optimizer=optimizer, loss=loss_function)

        model.add(Dense(256, input_shape=(self.latent_dim,)))
        model.add(Activation('leaky_relu'))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(Activation('leaky_relu'))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(Activation('leaky_relu'))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(self.img_dim))
        model.add(Activation('tanh'))

        return model

    def build_discriminator(self, optimizer, loss_function):
        
        model = NeuralNetwork(optimizer=optimizer, loss=loss_function)

        model.add(Dense(512, input_shape=(self.img_dim,)))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.5))
        model.add(Dense(256))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.5))
        model.add(Dense(2))
        model.add(Activation('softmax'))

        return model

    def train(self, n_epochs, batch_size=128, save_interval=50):

        mnist = fetch_mldata('MNIST original')

        X = mnist.data
        y = mnist.target

        # Rescale [-1, 1]
        X = (X.astype(np.float32) - 127.5) / 127.5

        half_batch = int(batch_size / 2)

        for epoch in range(n_epochs):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            self.discriminator.set_trainable(True)

            # Select a random half batch of images
            idx = np.random.randint(0, X.shape[0], half_batch)
            imgs = X[idx]

            # Sample noise to use as generator input
            noise = np.random.normal(0, 1, (half_batch, self.latent_dim))

            # Generate a half batch of images
            gen_imgs = self.generator.predict(noise)

            # Valid = [1, 0], Fake = [0, 1]
            valid = np.concatenate((np.ones((half_batch, 1)), np.zeros((half_batch, 1))), axis=1)
            fake = np.concatenate((np.zeros((half_batch, 1)), np.ones((half_batch, 1))), axis=1)

            # Train the discriminator
            d_loss_real, d_acc_real = self.discriminator.train_on_batch(imgs, valid)
            d_loss_fake, d_acc_fake = self.discriminator.train_on_batch(gen_imgs, fake)
            d_loss = 0.5 * (d_loss_real + d_loss_fake)
            d_acc = 0.5 * (d_acc_real + d_acc_fake)


            # ---------------------
            #  Train Generator
            # ---------------------

            # We only want to train the generator for the combined model
            self.discriminator.set_trainable(False)

            # Sample noise and use as generator input
            noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

            # The generator wants the discriminator to label the generated samples as valid
            valid = np.concatenate((np.ones((batch_size, 1)), np.zeros((batch_size, 1))), axis=1)

            # Train the generator
            g_loss, g_acc = self.combined.train_on_batch(noise, valid)

            # Display the progress
            print ("%d [D loss: %f, acc: %.2f%%] [G loss: %f, acc: %.2f%%]" % (epoch, d_loss, 100*d_acc, g_loss, 100*g_acc))

            # If at save interval => save generated image samples
            if epoch % save_interval == 0:
                self.save_imgs(epoch)

    def save_imgs(self, epoch):
        r, c = 5, 5 # Grid size
        noise = np.random.normal(0, 1, (r * c, self.latent_dim))
        # Generate images and reshape to image shape
        gen_imgs = self.generator.predict(noise).reshape((-1, self.img_rows, self.img_cols))

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        fig, axs = plt.subplots(r, c)
        plt.suptitle("Generative Adversarial Network")
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt,:,:], cmap='gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("mnist_%d.png" % epoch)
        plt.close()


if __name__ == '__main__':
    gan = GAN()
    gan.train(n_epochs=200000, batch_size=64, save_interval=400)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容