[Machine Learning From Scratch]-unsupervised_learning-gaussian_mixture_model

from __future__ import division, print_function
import math
from sklearn import datasets
import numpy as np

from mlfromscratch.utils import normalize, euclidean_distance, calculate_covariance_matrix
from mlfromscratch.utils import Plot


class GaussianMixtureModel():
    """A probabilistic clustering method for determining groupings among data samples.
    Parameters:
    -----------
    k: int
        The number of clusters the algorithm will form.
    max_iterations: int
        The number of iterations the algorithm will run for if it does
        not converge before that. 
    tolerance: float
        If the difference of the results from one iteration to the next is
        smaller than this value we will say that the algorithm has converged.
    """
    def __init__(self, k=2, max_iterations=2000, tolerance=1e-8):
        self.k = k
        self.parameters = []
        self.max_iterations = max_iterations
        self.tolerance = tolerance
        self.responsibilities = []
        self.sample_assignments = None
        self.responsibility = None

    def _init_random_gaussians(self, X):
        """ Initialize gaussian randomly """
        n_samples = np.shape(X)[0]
        self.priors = (1 / self.k) * np.ones(self.k)
        for i in range(self.k):
            params = {}
            params["mean"] = X[np.random.choice(range(n_samples))]
            params["cov"] = calculate_covariance_matrix(X)
            self.parameters.append(params)

    def multivariate_gaussian(self, X, params):
        """ Likelihood """
        n_features = np.shape(X)[1]
        mean = params["mean"]
        covar = params["cov"]
        determinant = np.linalg.det(covar)
        likelihoods = np.zeros(np.shape(X)[0])
        for i, sample in enumerate(X):
            d = n_features  # dimension
            coeff = (1.0 / (math.pow((2.0 * math.pi), d / 2)
                            * math.sqrt(determinant)))
            exponent = math.exp(-0.5 * (sample - mean).T.dot(np.linalg.pinv(covar)).dot((sample - mean)))
            likelihoods[i] = coeff * exponent

        return likelihoods

    def _get_likelihoods(self, X):
        """ Calculate the likelihood over all samples """
        n_samples = np.shape(X)[0]
        likelihoods = np.zeros((n_samples, self.k))
        for i in range(self.k):
            likelihoods[
                :, i] = self.multivariate_gaussian(
                X, self.parameters[i])
        return likelihoods

    def _expectation(self, X):
        """ Calculate the responsibility """
        # Calculate probabilities of X belonging to the different clusters
        weighted_likelihoods = self._get_likelihoods(X) * self.priors
        sum_likelihoods = np.expand_dims(
            np.sum(weighted_likelihoods, axis=1), axis=1)
        # Determine responsibility as P(X|y)*P(y)/P(X)
        self.responsibility = weighted_likelihoods / sum_likelihoods
        # Assign samples to cluster that has largest probability
        self.sample_assignments = self.responsibility.argmax(axis=1)
        # Save value for convergence check
        self.responsibilities.append(np.max(self.responsibility, axis=1))

    def _maximization(self, X):
        """ Update the parameters and priors """
        # Iterate through clusters and recalculate mean and covariance
        for i in range(self.k):
            resp = np.expand_dims(self.responsibility[:, i], axis=1)
            mean = (resp * X).sum(axis=0) / resp.sum()
            covariance = (X - mean).T.dot((X - mean) * resp) / resp.sum()
            self.parameters[i]["mean"], self.parameters[
                i]["cov"] = mean, covariance

        # Update weights
        n_samples = np.shape(X)[0]
        self.priors = self.responsibility.sum(axis=0) / n_samples

    def _converged(self, X):
        """ Covergence if || likehood - last_likelihood || < tolerance """
        if len(self.responsibilities) < 2:
            return False
        diff = np.linalg.norm(
            self.responsibilities[-1] - self.responsibilities[-2])
        # print ("Likelihood update: %s (tol: %s)" % (diff, self.tolerance))
        return diff <= self.tolerance

    def predict(self, X):
        """ Run GMM and return the cluster indices """
        # Initialize the gaussians randomly
        self._init_random_gaussians(X)

        # Run EM until convergence or for max iterations
        for _ in range(self.max_iterations):
            self._expectation(X)    # E-step
            self._maximization(X)   # M-step

            # Check convergence
            if self._converged(X):
                break

        # Make new assignments and return them
        self._expectation(X)
        return self.sample_assignments
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容