[Machine Learning From Scratch]-unsupervised_learning-genetic_algorithm

from __future__ import print_function, division
import string
import numpy as np

class GeneticAlgorithm():
    """An implementation of a Genetic Algorithm which will try to produce the user
    specified target string.
    Parameters:
    -----------
    target_string: string
        The string which the GA should try to produce.
    population_size: int
        The number of individuals (possible solutions) in the population.
    mutation_rate: float
        The rate (or probability) of which the alleles (chars in this case) should be
        randomly changed.
    """
    def __init__(self, target_string, population_size, mutation_rate):
        self.target = target_string
        self.population_size = population_size
        self.mutation_rate = mutation_rate
        self.letters = [" "] + list(string.ascii_letters)

    def _initialize(self):
        """ Initialize population with random strings """
        self.population = []
        for _ in range(self.population_size):
            # Select random letters as new individual
            individual = "".join(np.random.choice(self.letters, size=len(self.target)))
            self.population.append(individual)

    def _calculate_fitness(self):
        """ Calculates the fitness of each individual in the population """
        population_fitness = []
        for individual in self.population:
            # Calculate loss as the alphabetical distance between
            # the characters in the individual and the target string
            loss = 0
            for i in range(len(individual)):
                letter_i1 = self.letters.index(individual[i])
                letter_i2 = self.letters.index(self.target[i])
                loss += abs(letter_i1 - letter_i2)
            fitness = 1 / (loss + 1e-6)
            population_fitness.append(fitness)
        return population_fitness

    def _mutate(self, individual):
        """ Randomly change the individual's characters with probability
        self.mutation_rate """
        individual = list(individual)
        for j in range(len(individual)):
            # Make change with probability mutation_rate
            if np.random.random() < self.mutation_rate:
                individual[j] = np.random.choice(self.letters)
        # Return mutated individual as string
        return "".join(individual)

    def _crossover(self, parent1, parent2):
        """ Create children from parents by crossover """
        # Select random crossover point
        cross_i = np.random.randint(0, len(parent1))
        child1 = parent1[:cross_i] + parent2[cross_i:]
        child2 = parent2[:cross_i] + parent1[cross_i:]
        return child1, child2

    def run(self, iterations):
        # Initialize new population
        self._initialize()

        for epoch in range(iterations):
            population_fitness = self._calculate_fitness()

            fittest_individual = self.population[np.argmax(population_fitness)]
            highest_fitness = max(population_fitness)

            # If we have found individual which matches the target => Done
            if fittest_individual == self.target:
                break

            # Set the probability that the individual should be selected as a parent
            # proportionate to the individual's fitness.
            parent_probabilities = [fitness / sum(population_fitness) for fitness in population_fitness]

            # Determine the next generation
            new_population = []
            for i in np.arange(0, self.population_size, 2):
                # Select two parents randomly according to probabilities
                parent1, parent2 = np.random.choice(self.population, size=2, p=parent_probabilities, replace=False)
                # Perform crossover to produce offspring
                child1, child2 = self._crossover(parent1, parent2)
                # Save mutated offspring for next generation
                new_population += [self._mutate(child1), self._mutate(child2)]

            print ("[%d Closest Candidate: '%s', Fitness: %.2f]" % (epoch, fittest_individual, highest_fitness))
            self.population = new_population

        print ("[%d Answer: '%s']" % (epoch, fittest_individual))
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容