apply、applymap、agg、transform、map对比

apply()

apply()属于DataFrame、Series对象的方法,可以针对DataFrame中的行数据或列数据、以及Series中数据应用操作。对DataFrame时,默认axis=0时,以列为单位进行操作;axis=1时,以行为单位进行操作。可使用聚合函数。

import pandas as pd
import numpy as np

frame = pd.DataFrame(np.random.rand(4, 3), columns = list('abc'), index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
print(frame)
# 输出如下:
#                a         b         c
# Utah    0.443188  0.919623  0.550259
# Ohio    0.013923  0.557696  0.723975
# Texas   0.865469  0.720604  0.081306
# Oregon  0.506174  0.212421  0.061561


func = lambda x: x.max() - x.min()
print(frame.apply(func))
# 输出如下:
# a    0.851545
# b    0.707202
# c    0.662415
# dtype: float64

applymap()

applymap()是pandas里DataFrame的方法,它对DataFrame中的所有元素应用操作,不能使用聚合函数。

import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.rand(4, 3), columns = list('abc'), index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
print(frame)
# 输出如下:
#                a         b         c
# Utah    0.443188  0.919623  0.550259
# Ohio    0.013923  0.557696  0.723975
# Texas   0.865469  0.720604  0.081306
# Oregon  0.506174  0.212421  0.061561
#注意使用applymap()可以格式化字符串,使用apply()会报错,可采用函数的方法达到相同的目的。
func = lambda x: f'{x:.2f}%'
print(frame.applymap(func))

# 输出如下:
#             a      b      c
# Utah    0.34%  0.43%  0.67%
# Ohio    0.75%  0.50%  0.14%
# Texas   0.68%  0.28%  0.90%
# Oregon  0.05%  0.86%  0.78%

agg()

agg()属于DataFrame、Series对象的方法,可与聚合函数一起使用,例如sum、avg、count等。

#对dataframe指定列进行指定的聚合运算
df = pd.DataFrame([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9],
                   [np.nan, np.nan, np.nan]],
                columns=['A', 'B', 'C'])
                
df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})

#输出:

        A    B
max   NaN  8.0
min   1.0  2.0
sum  12.0  NaN

transform()

transform()对DataFrame、Series的每个元素进行操作(以列为单元执行),可与聚合函数一起使用,返回的DataFrame结构和原数组一致。

df = pd.DataFrame({'A': range(3), 'B': range(1, 4)})
 df
   A  B
0  0  1
1  1  2
2  2  3

 df.transform(lambda x: x + 1)
   A  B
0  1  2
1  2  3
2  3  4

#transform使用多个自定义函数
df = pd.DataFrame({'A': range(3), 'B': range(1, 4)})
trans=df.transform([np.sqrt, np.exp])

          A                   B           
       sqrt       exp      sqrt        exp
0  0.000000  1.000000  1.000000   2.718282
1  1.000000  2.718282  1.414214   7.389056
2  1.414214  7.389056  1.732051  20.085537

map()

map()是python自带的方法,可以在DataFrame中对具体的某一列使用.map()后缀的方式调用,对整个DataFrame使用会报错,不能使用聚合函数。

import pandas as pd
import numpy as np

frame = pd.DataFrame(np.random.rand(4, 3), columns = list('abc'), index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
print(frame)
# 输出如下:
#                a         b         c
# Utah    0.443188  0.919623  0.550259
# Ohio    0.013923  0.557696  0.723975
# Texas   0.865469  0.720604  0.081306
# Oregon  0.506174  0.212421  0.061561

func = lambda x: f'{x:.2f}%'
print(frame['a'].map(func))
# 输出如下:
# Utah      0.65%
# Ohio      0.90%
# Texas     0.09%
# Oregon    0.72%
# Name: a, dtype: object

参考1
参考2

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容