0.引言
● 332.重新安排行程
● 51. N皇后
● 37. 解数独
332.# 重新安排行程
Category | Difficulty | Likes | Dislikes |
---|---|---|---|
algorithms | Hard (47.53%) | 757 | - |
给你一份航线列表 tickets
,其中 tickets[i] = [from<sub>i</sub>, to<sub>i</sub>]
表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK
(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK
开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
- 例如,行程
["JFK", "LGA"]
与["JFK", "LGB"]
相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
示例 1:
image.png
输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]
示例 2:
image.png
输入:tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"] ,但是它字典排序更大更靠后。
提示:
1 <= tickets.length <= 300
tickets[i].length == 2
from<sub>i</sub>.length == 3
to<sub>i</sub>.length == 3
-
from<sub>i</sub>
和to<sub>i</sub>
由大写英文字母组成 from<sub>i</sub> != to<sub>i</sub>
回溯
这个数据结构设计很巧妙:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
cover了 [A-->B, A-->B] 这种重复的情况。
/*
* @lc app=leetcode.cn id=332 lang=cpp
*
* [332] 重新安排行程
*/
// @lc code=start
class Solution {
public:
vector<string> findItinerary(vector<vector<string>>& tickets) {
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
std::unordered_map<std::string, std::map<std::string, int>> targets;
for (const auto& ticket : tickets) {
// targets[ticket[0]] --> std::map<string, int>
targets[ticket[0]][ticket[1]]++;
}
std::vector<std::string> res;
res.push_back("JFK");
dfs(tickets.size(), targets, res);
return res;
}
private:
// bool找到满足条件的一种解即可
bool dfs(int tickets_size,
std::unordered_map<std::string, std::map<std::string, int>>& targets,
std::vector<std::string>& res) {
// 1.终止条件
if (res.size() == tickets_size + 1) {
return true;
}
// 已知出发地(res的最后一个元素),遍历目的地:
// A-->{B,1}、 A-->{C,2},已知A,遍历{B,1}、{C,2}
for (auto& target : targets[res[res.size() - 1]]) {
// 已经用过这张票
if (target.second <= 0) continue;
target.second--;
res.push_back(target.first);
if (dfs(tickets_size, targets, res)) return true;
res.pop_back();
target.second++;
}
return false;
}
};
// @lc code=end
51. # N 皇后
Category | Difficulty | Likes | Dislikes |
---|---|---|---|
algorithms | Hard (74.21%) | 1703 | - |
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n
个皇后放置在 n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n
,返回所有不同的 n皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q'
和 '.'
分别代表了皇后和空位。
示例 1:
image.png
输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1
输出:[["Q"]]
提示:
1 <= n <= 9
回溯法
/*
* @lc app=leetcode.cn id=51 lang=cpp
*
* [51] N 皇后
*/
// @lc code=start
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
std::vector<string> queen; // 存储皇后的位置
std::vector<std::vector<int>> attack; // attack标记皇后攻击的位置
std::vector<std::vector<string>> res; // 最后的结果
for (int i = 0; i < n; i++) {
attack.push_back(std::vector<int>()); // 少定义一个变量
for (int j = 0; j < n; j++) {
attack[i].push_back(0);
}
queen.push_back("");
queen[i].append(n, '.');
}
backtrack(0, n, queen, attack, res);
return res;
}
private:
void put_queen(int x, int y, std::vector<std::vector<int>>& attack) {
static const int dx[] = {-1, -1, -1, 0, 0, 1, 1, 1}; // 八个方向
static const int dy[] = {-1, 0, 1, -1, 1, -1, 0, 1};
attack[x][y] = 1;
int n = attack[0].size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < 8; j++) {
int tmp_x = x + i * dx[j];
int tmp_y = y + i * dy[j];
// 坐标在棋盘内
if (0 <= tmp_x && tmp_x < n && 0 <= tmp_y && tmp_y < n) {
attack[tmp_x][tmp_y] = 1;
}
}
}
}
// 大的递归是按行进行
void backtrack(
int k, // 当前处理的行
int n, // N皇后中的N
std::vector<string>& queen, // 存储皇后的位置
std::vector<std::vector<int>>& attack, // attack标记皇后攻击的位置
std::vector<std::vector<string>>& res) {
if (k == n) {
res.push_back(queen);
return;
}
// 遍历 0 至 n-1 列,在循环中,回溯试探皇后可以放置的位置
for (int i = 0; i < n; i++) {
// 判断是否可以放皇后,如果k行所有列都满了,backtrack执行完由栈递归返回
if (attack[k][i] == 0) {
std::vector<std::vector<int>> tmp = attack; // 备份attack数组
queen[k][i] = 'Q'; // 标记皇后位置
put_queen(k, i, attack); // 更新attack
// 递归试探 k+1 行的皇后放置位置回溯回来, 恢复状态
backtrack(k + 1, n, queen, attack, res);
attack = tmp; // 恢复attack数组
queen[k][i] = '.'; // 恢复queen数组
}
}
}
};
// @lc code=end
37. # 解数独
Category | Difficulty | Likes | Dislikes |
---|---|---|---|
algorithms | Hard (67.61%) | 1584 | - |
编写一个程序,通过填充空格来解决数独问题。
数独的解法需** 遵循如下规则**:
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.'
表示。
示例 1:
image.png
输入:board =
[["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]]
输出:
[["5","3","4","6","7","8","9","1","2"],
["6","7","2","1","9","5","3","4","8"],
["1","9","8","3","4","2","5","6","7"],
["8","5","9","7","6","1","4","2","3"],
["4","2","6","8","5","3","7","9","1"],
["7","1","3","9","2","4","8","5","6"],
["9","6","1","5","3","7","2","8","4"],
["2","8","7","4","1","9","6","3","5"],
["3","4","5","2","8","6","1","7","9"]]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:
image.png
提示:
board.length == 9
board[i].length == 9
-
board[i][j]
是一位数字或者'.'
- 题目数据 保证 输入数独仅有一个解
回溯法
/*
* @lc app=leetcode.cn id=37 lang=cpp
*
* [37] 解数独
*/
// @lc code=start
class Solution {
public:
void solveSudoku(vector<vector<char>>& board) {
dfs(board);
}
private:
bool dfs(std::vector<std::vector<char>>& board) {
for (int i = 0; i < board.size(); i++) { // 遍历行
for (int j = 0; j < board[0].size(); j++) { // 遍历列
if (board[i][j] == '.') {
for (char k = '1'; k <= '9'; k++) { // (i, j) 这个位置放k是否合适
if (is_valid(i, j, k, board)) {
board[i][j] = k; // 放置k
if (dfs(board)) return true; // 如果找到合适一组立刻返回
board[i][j] = '.'; // 回溯,撤销k
}
}
return false; // 9个数都试完了,都不行,那么就返回false
}
}
}
return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool is_valid(int row, int col, char val,
std::vector<std::vector<char>>& board) {
for (int i = 0; i < 9; i++) { // 判断行里是否重复
if (board[row][i] == val) {
return false;
}
}
for (int j = 0; j < 9; j++) { // 判断列里是否重复
if (board[j][col] == val) {
return false;
}
}
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
for (int j = startCol; j < startCol + 3; j++) {
if (board[i][j] == val) {
return false;
}
}
}
return true;
}
};