归一化,就是为了限定你的输入向量的最大值跟最小值不超过你的隐层跟输出层函数的限定范围。比如,你的隐层的传递函数为logsig,那么你的输出就在01范围内,如果你的传递函数为tansig,你的隐层的输出在-1·范围内,用归一化,这也是为了你的隐层传递函数的输出着想。
标准化,只是对数据进行了统一的标准,其大小可能已经超出了隐层传递函数的界定范围,在后续的运行时,容易出错。
2018-01-16 深度学习归一化的意义与作用
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。