【R画图学习19.1】直方图

频率分布直方图,或者频数分布直方图,是一种用来可视化数据的分布情况的绘图,在生物医学领域应用广泛,比如展示高通量测序结果的测序读数分布等。

Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery

例如上面这个图展示的是两个定量蛋白组样品的频率分布直方图,有意思的是该图在x轴上下两个方向展示两组样品,在区分两组的同时又能很好的比较二者的差异。

今天我们就来学习一下频率分布直方图的画法。

用的测试数据是我从附表里面随便选的两列,不同基因的表达值。

library(ggplot2)

library(reshape2)

library(tidyverse)

data <- read.table("data.txt",header=T,sep="\t")

data_new <- melt(data,id="ID")  #还是前面学过的语法,长矩阵转化成短矩阵。

colnames(data_new) <- c("ID","Sample","Value")


先来一个简单版本的,一个变量的情况。我们先用hist函数测试。

X128 <- data_new %>% filter(Sample=="X128N")

X130 <- data_new %>% filter(Sample=="X130C")


hist(X128$Value,

    breaks = 14,  #指定直方图的X轴区间,可以是向量分割自己指定

    col = "red",

    xlab = "Fold Change(Log2)",

    ylab = "Frequency",

    main = "test",

    border = "black",

    freq = FALSE,

    density = 12,

    angle = 45,

    labels = T,  #添加直方图bar上的label

    ylim=c(0,0.8)

)

#添加密度线

lines(density(X128$Value),

      col = "black",

      lwd = 3)

#添加外框线

box()

下面我们还是测试最常用的ggplot。

ggplot(X128,aes(Value))+geom_histogram()

ggplot(X128,aes(Value))+

geom_histogram(stat = 'bin',bins = 20,   #设定间距的个数

              fill='darkgreen',

              color='gray')+

theme_bw()

也可以通过设置 binwidth 参数的值,该参数值会覆盖 bins 参数的值,所以只要设置其中一个参数就可以了

ggplot(X128)+

geom_histogram(aes(Value),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_histogram(aes(Value,y = -..count..),  #可以画出反方向的

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

theme_bw()+

theme(axis.title = element_blank())


我们再来添加密度曲线上去。

ggplot(X128,aes(Value))+

geom_histogram(stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

theme_bw()+

geom_freqpoly(bins = 20,binwidth = 0.5,size=1.5,color="red")+

theme(axis.title = element_blank())

ggplot(X128)+

geom_histogram(aes(Value),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_freqpoly(aes(Value),bins = 20,binwidth = 0.5,size=1.5,color="red")+

geom_histogram(aes(Value,y = -..count..),

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

geom_freqpoly(aes(Value,y = -..count..),bins = 20,binwidth = 0.5,size=1.5,color="red")+

theme_bw()+

theme(axis.title = element_blank())

默认的geom_histogram是画的count,我们也可以通过density来画密度。

ggplot(X128)+
geom_histogram(aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_histogram(aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

theme_bw()+

theme(axis.title = element_blank())

geom_freqpoly()的另一个方式是geom_density(),但底层密度计算是复杂的,从而导致有时结果很难解释,它们总是假设数据是连续的、无界的、平滑的。这两个函数是针对单个连续数值变量进行统计,但仍然可以比较不同的subgroup,举例:ggplot(diamonds, aes(price, fill = cut)) + geom_histogram(binwidth = 500)和ggplot(diamonds, aes(price, colour = cut)) + geom_freqpoly(binwidth = 500),即histogram设置aes的fill参数,freqpoly设置aes的color参数。另一种可选方案当然是分面啦。

ggplot(X128)+

geom_histogram(aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='darkgreen',

              color='gray')+

geom_density(aes(Value,y=..density..),bins = 20,binwidth = 0.5,size=1.5,color="red")+

geom_histogram(aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='blue',

              color='gray')+

geom_density(aes(Value,y = -..density..),bins = 20,binwidth = 0.5,size=1.5,color="red")+

theme_bw()+

theme(axis.title = element_blank())

我们还可以添加背景填充色,以及设置背景填充色。

dense=data.frame(density(X128$Value)[c("x","y")])    #获得密度分布数据

ggplot(X128)+

geom_histogram(aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='gray',

              color='gray')+

geom_density(aes(Value,y=..density..),size=1.5,color="red")+

geom_area(data=subset(dense,x<2),aes(x,y,fill="Label 1"),alpha=0.4)+

geom_area(data=subset(dense,x>=2 & x<3),aes(x,y,fill="Label 2"),alpha=0.4)+

geom_area(data=subset(dense,x>=3 & x<5),aes(x,y,fill="Label 3"),alpha=0.4)+

geom_area(data=subset(dense,x>=5),aes(x,y,fill="Label 4"),alpha=0.4)+

scale_fill_manual("Test Tile",breaks=c("Label 1","Label 2","Label 3","Label 4"),

                  values=c("Label 1"="red","Label 2"="blue","Label 3"="purple","Label 4"="cyan")) #自定义颜色



接下来,我们来绘制多个变量的情况。

ggplot()+

geom_histogram(data=X128,aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='lightgreen',

              color='gray')+

geom_density(data=X128,aes(Value,y=..density..),size=1.5,color="red")+

geom_histogram(data=X130,aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='lightblue',

              color='gray')+

geom_density(data=X130,aes(Value,y = -..density..),size=1.5,color="red")+

theme_bw()+

theme(axis.title = element_blank())

这样子,我们就绘制了一个镜像的直方图。

ggplot(data_new, aes(Value, after_stat(density), colour = Sample)) +

geom_freqpoly(bins = 40)

两组数据简单的密度曲线。

#多变量直方图

默认是堆积直方图的效果,和柱状图的调整是类似的,通过position来调整

ggplot(data_new, aes(Value, after_stat(density), fill= Sample)) +

geom_histogram(color="#e9ecef", alpha=0.6, position = 'identity') +

#geom_histogram(color="#e9ecef", alpha=0.6, position = 'stack') +

#geom_histogram(color="#e9ecef", alpha=0.6, position = 'dodge') +

#geom_histogram(color="#e9ecef", alpha=0.6, position = 'fill') +

scale_fill_manual(values=c("#377eb8", "#4daf4a"))

这是两个变量直方图放在一起的样子,还是不如镜像直方图直观。

也可以利用我们前面用过的分面技巧,分开绘制。

#分面直方图

ggplot(data_new, aes(Value, after_stat(density), fill= Sample)) +

geom_histogram(alpha = 0.6, bins = 40) +

geom_freqpoly(bins = 40)+

facet_wrap(~ Sample) +

theme(legend.position = "none")

下面,我们试着画一下,我们开始在paper中看到的图。

ggplot()+

geom_histogram(data=X128,aes(x=Value,y=..density..),

              stat = 'bin',bins = 20,

              fill='#2AC643',

              color='white')+

geom_histogram(data=X130,aes(x=Value,y = -..density..),

              stat = 'bin',bins = 20,

              fill='gray60',

              color='white')+

scale_y_continuous(label=abs)+

theme_classic(base_size = 15)+    #换个背景主题

scale_x_continuous(limits = c(1,7),

                    breaks = c(1,2,3,4,5,6,7),

                    expand = c(0,0))+

theme(panel.border = element_rect(size = 1,fill='transparent'),

        legend.position = 'none',  #去掉图例

        axis.text = element_text(colour = 'black'))+

geom_vline(xintercept =median(X128$Value),linetype=2,cex=1)+ #添加辅助线

labs(x='X128/X130',y='Frequency')+ #自定义轴标题

annotate('text',x=median(X128$Value)+0.1,y=-0.6,

        label = round(median(X128$Value),digits = 2),

        size=4,color='black')+

annotate('text',x=2,y=0.7,label='Known nuclear RBPs',size=6,color='#2AC643')+

annotate('text',x=2,y=-0.7,label='Non-nuclear Non-RBPs',size=6,color='grey50')+  #添加文本标签

geom_segment(aes(y = 0.78, yend = 0.78,x=median(X128$Value), xend =median(X128$Value)+0.15),arrow = arrow(length = unit(0.2, "cm"),type="closed"),

            size=0.5)+   #添加箭头

annotate('text',x=median(X128$Value)+0.3,y=0.78,

        label ="retain",digits = 2,

        size=4,color='black')   #添加文本

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容